Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.

Neuroimage

INSERM, Institut Langevin, 1 rue Jussieu, 75005, Paris, France; ESPCI ParisTech, PSL Research University, Institut Langevin, 1 rue Jussieu, 75005, Paris, France; CNRS, Institut Langevin, 1 rue Jussieu, 75005, Paris, France. Electronic address:

Published: January 2016

Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100μm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686564PMC
http://dx.doi.org/10.1016/j.neuroimage.2015.09.037DOI Listing

Publication Analysis

Top Keywords

functional ultrasound
8
ultrafast doppler
8
doppler imaging
8
blood volume
8
thinned-skull window
8
contrast agent
8
intact skull
8
skull bone
8
brain
6
fus
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!