Nucleoside analogs are extremely useful for the development of therapeutic agents to control viral diseases and cancer. Among the numerous modifications on the nucleoside skeleton, replacement of the oxygen of the furanose ring by a CH2 group resulted in increased flexibility and higher resistance to phosphorylases and led to carbocyclic nucleoside analogs (or carbanucleosides). The broad spectrum of biological activities of carbocyclic nucleosides led to tremendous research interest in their syntheses. The article documents recent strategies for the synthesis of active carbocyclic nucleosides by presenting individual case studies, such as the neplanocins, entecavir and selected fluorinated carbocyclic nucleosides. Furthermore, it provides new insights into new directions for more potent and active carbocyclic nucleoside analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc.15.105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!