A major key to improvement of cancer therapy is the combination of drugs. Mixing drugs that already exist on the market may offer an attractive alternative. Here we report on a new model-based streamlined feedback system control (s-FSC) method, based on a design of experiment approach, for rapidly finding optimal drug mixtures with minimal experimental effort. We tested combinations in an in vitro assay for the viability of a renal cell adenocarcinoma (RCC) cell line, 786-O. An iterative cycle of in vitro testing and s-FSC analysis was repeated a few times until an optimal low dose combination was reached. Starting with ten drugs that target parallel pathways known to play a role in the development and progression of RCC, we identified the best overall drug combination, being a mixture of four drugs (axitinib, erlotinib, dasatinib and AZD4547) at low doses, inhibiting 90% of cell viability. The removal of AZD4547 from the optimized drug combination resulted in 80% of cell viability inhibition, while still maintaining the synergistic interaction. These optimized drug combinations were significantly more potent than monotherapies of all individual drugs (p < 0.001, CI < 0.3).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586442PMC
http://dx.doi.org/10.1038/srep14508DOI Listing

Publication Analysis

Top Keywords

drug combinations
8
drug combination
8
cell viability
8
optimized drug
8
drug
5
drugs
5
streamlined search
4
search technology
4
technology identification
4
identification synergistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!