Pyrrolizidine alkaloids (PAs) are toxins that are exclusively biosynthesized by plants and are commonly present in foods and herbs. PAs are usually associated with poisoning events in livestock and human beings. The aim of the present study was to evaluate the behavioral and neurochemical effects of prenatal exposure to PA integerrimine N-oxide of rats in adulthood. Pregnant Wistar rats received integerrimine N-oxide from the butanolic residue of Senecio brasiliensis by gavage on gestational days 6-20 at doses of 3, 6 and 9 mg/kg. During adulthood of the offspring, the following behavioral tests were performed: open-field, plus-maze, forced swimming, catalepsy and stereotypy. Histological analyses and monoamine levels were measured. Male offspring from dams that were exposed to 9 mg/kg showed an increase in locomotion in the open-field test, an increased frequency of entries and time spent in open arms in elevated plus-maze test, as well as decreased swimming time. In the female offspring from dams that were exposed to 9 mg/kg, there was an increased time of climbing in forced swimming and intensity of stereotyped behavior. The histological study indicates an increase in the number of multinucleated cells in the liver (6 and 9 mg/kg). In neurotransmitter analysis, specifically in the striatum, we observed change in dopamine and serotonin levels in the middle dose. Thus, our results indicate that prenatal exposure to integerrimine N-oxide changed behavior in adulthood and neurotransmitter levels in the striatum. Our results agree with previous studies, which showed that integerrimine N-oxide impaired physical and neurobehavioral development in childhood that can persist until adulthood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2015.09.003 | DOI Listing |
J Hazard Mater
September 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
The occurrence of pyrrolizidine alkaloids (PAs) in the aquatic environment has received growing attention due to their persistent mutagenicity and carcinogenicity. In this study, the photooxidation processes of four representative PAs (senecionine, senecionine N-oxide, europine, and heliotrine) in the presence of dissolved organic matter (DOM) were investigated. The excited triplet DOM (DOM*) was demonstrated to play a dominant role in the phototransformation of PAs.
View Article and Find Full Text PDFJ Chromatogr A
August 2023
Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. Electronic address:
The benefit of combining liquid chromatography (LC), supercritical fluid chromatography (SFC) and vacuum Differential Mobility Spectrometry - Mass Spectrometry (vDMS-MS) was investigated for the analysis of fourteen diastereomeric pyrrolizidine alkaloids (PA); intermedine, echinatine, lycopsamine, indicine, intermedine-N-oxide, echinatine-N-oxide, indicine-N-oxide, lycopsamine-N-oxide, senecivernine, senecionine, jacobine, senecivernine-N-oxide, senecionine-N-oxide, retrorsine. The mobile phase composition (15-100% MeOH and ACN), flow rate (8-100 µL/min), vDMS cell pressure, and F value showed an effect on the mobility behavior of the analytes. At 15% MeOH with a flow rate of 100 µL/min and 33 mbar vDMS pressure, 8 out 14 PA could be partially or totally separated by vDMS-MS.
View Article and Find Full Text PDFChem Biol Interact
August 2023
The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China. Electronic address:
Pyrrolizidine alkaloids (PAs) are naturally occurring hepatotoxins, and herbs containing PAs are of high concern. PAs are normally found in tertiary amines and N-oxide forms (PA N-oxides), yet the latter are less evaluated for their toxicokinetics. As a continuation of our investigation into the safety assessment of PA-containing herbal medicines, the toxicity and toxicokinetic characteristics of senecionine N-oxide (a representative toxic PA N-oxide) were investigated by using the UDP-glucuronosyltransferase 1A4 humanized mouse model (hUGT1A4 mouse model) and compared with those in wild-type mice simultaneously.
View Article and Find Full Text PDFFront Pharmacol
March 2023
Division of Toxicology, Wageningen University, Wageningen, Netherlands.
Over 1,000 pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) occur in 3% of all flowering plants. PA-N-oxides are toxic when reduced to their parent PAs, which are bioactivated into pyrrole intermediates that generate protein- and DNA-adducts resulting in liver toxicity and carcinogenicity. Literature data for senecionine N-oxide in rats indicate that the relative potency (REP) value of this PA-N-oxide compared to its parent PA senecionine varies with the endpoint used.
View Article and Find Full Text PDFMol Nutr Food Res
February 2023
Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.
Scope: This study aims to determine if previously developed physiologically-based kinetic (PBK) model in rat can be modified for senecionine (SEN) and its N-oxide (SENO), and be used to investigate potential species differences between rat and human in relative potency (REP) of the N-oxide relative to the parent pyrrolizidine alkaloid (PA).
Methods And Results: In vitro derived kinetic parameters including the apparent maximum velocities (V ) and Michaelis-Menten constants (K ) for SENO reduction and SEN clearance are used to define the PBK models. The rat model is validated with published animal data, and the toxicokinetic profiles of SEN from either orally-administered SENO or SEN are simulated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!