Translation of therapeutic polymeric nanosystems to patients and industry requires simplified, reproducible and scalable methods for assembly and loading. A single-step in-line process based on nanocoprecipitation of oxazoline-siloxane block copolymers in flow-focusing poly(dimethylsiloxane) microfluidics was designed to manufacture injection-ready nanosystems. Nanosystem characteristics could be controlled by copolymer concentration, block length and chemistry, microchannel geometry, flow rate, aqueous/organic flow rate ratio and payload concentration. The well-tolerated nanosystems exhibited differential cell binding and payload delivery and could confer sensitivity to photodynamic therapy to HeLa cancer cells. Such injection-ready nanosystems carrying drugs, diagnostic or functional materials may facilitate translation to clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr03543kDOI Listing

Publication Analysis

Top Keywords

polymeric nanosystems
8
injection-ready nanosystems
8
flow rate
8
nanosystems
5
microfluidics-based single-step
4
single-step preparation
4
preparation injection-ready
4
injection-ready polymeric
4
nanosystems medical
4
medical imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!