Overglaze decoration porcelain is an important category of ancient Chinese ceramics, which has significant artistic value and scientific value. Nondestructive analysis methods such as Raman spectroscopy and EDXRF were used to analyze the overglaze decorations on the Jingdezhen ceramic samples of Yuan, Ming and Qing Dynasty. The recipe and color mechanism of the overglaze pigments were discussed according to the chemical composition and phase composition analysis. The study found that dark red overglaze decorations of ancient Honglvcai, Wucai and famille rose in Jingdezhen are colored by hematite, yellow color is lead tin yellow, carmine decoration is colored by gold less than 0. 1 % in concentration, and green decorations are colored by bivalent copper ion. The result also indicates that the effective combination of Raman spectroscopy and EDXRF can play an important role in the deep research on ceramic artifacts, especially for the overglaze decoration pigments which are interveined each other.

Download full-text PDF

Source

Publication Analysis

Top Keywords

overglaze decorations
12
decorations jingdezhen
8
overglaze decoration
8
raman spectroscopy
8
spectroscopy edxrf
8
overglaze
6
[raman edxrf
4
edxrf study
4
study overglaze
4
decorations
4

Similar Publications

Distinguishing Genuine Imperial Qing Dynasty Porcelain from Ancient Replicas by On-Site Non-Invasive XRF and Raman Spectroscopy.

Materials (Basel)

August 2022

Musée des Arts d'Extrême-Orient, Fondation Baur, Rue Munier-Romilly 8, 1206 Geneva, Switzerland.

The combined use of non-invasive on-site portable techniques, Raman microscopy, and X-ray fluorescence spectroscopy on seven imperial bowls and two decorated dishes, attributed to the reigns of the Kangxi, Yongzheng, Qianlong, and Daoguang emperors (Qing Dynasty), allows the identification of the coloring agents/opacifiers and composition types of the glazes and painted enamels. Particular attention is paid to the analysis of the elements used in the (blue) marks and those found in the blue, yellow, red, and honey/gilded backgrounds on which, or in reserve, a floral motif is principally drawn. The honey-colored background is made with gold nanoparticles associated with a lead- and arsenic-based flux.

View Article and Find Full Text PDF

Mina'i ceramics dating to the late 12th and early 13th century made in the Kashan region of Iran represent a novel period of overglaze enamelling technology in ceramic history. New colours were used to produce stylistically attractive and dynamic polychrome motifs. Due to their archaeological context, and popularity in the art market since the mid-20th century, these objects often have complex conditions involving reconstruction and overpainting.

View Article and Find Full Text PDF

Cadmium pigments in consumer products and their health risks.

Sci Total Environ

March 2019

School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK. Electronic address:

Cadmium is a toxic heavy metal that has been increasingly regulated over the past few decades. The main exposure routes for the general public are the consumption of certain foods and the inhalation of cigarette smoke. However, additional exposure may occur through the current and historical use of the metal in consumer products.

View Article and Find Full Text PDF

Overglaze decoration porcelain is an important category of ancient Chinese ceramics, which has significant artistic value and scientific value. Nondestructive analysis methods such as Raman spectroscopy and EDXRF were used to analyze the overglaze decorations on the Jingdezhen ceramic samples of Yuan, Ming and Qing Dynasty. The recipe and color mechanism of the overglaze pigments were discussed according to the chemical composition and phase composition analysis.

View Article and Find Full Text PDF

Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar.

Talanta

September 2015

Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CEP 81.531-980 Curitiba-PR, Brazil. Electronic address:

A simple and sensitive electroanalytical method was developed for determination of nanomolar levels of Pb(II) based on the voltammetric stripping response at a carbon paste electrode modified with biochar (a special charcoal) and bismuth nanostructures (nBi-BchCPE). The proposed methodology was based on spontaneous interactions between the highly functionalized biochar surface and Pb(II) ions followed by reduction of these ions into bismuth nanodots which promote an improvement on the stripping anodic current. The experimental procedure could be summarized in three steps: including an open circuit pre-concentration, reduction of accumulated lead ions at the electrode surface and stripping step under differential pulse voltammetric conditions (DPAdSV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!