Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2.

Free Radic Biol Med

Kosair Children's Hospital Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA, 40202; Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325200. Electronic address:

Published: December 2015

Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684781PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2015.08.009DOI Listing

Publication Analysis

Top Keywords

sfn renal
20
renal protection
20
type diabetes
16
nrf2 downstream
16
protection type
16
sfn
12
sfn protection
12
downstream antioxidant
12
nrf2
11
diabetic nephropathy
8

Similar Publications

Sulforaphane alleviates renal fibrosis through dual regulation on mTOR-mediated autophagy pathway.

Int Urol Nephrol

November 2024

Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Renal fibrosis is a common pathological process of progressive chronic kidney disease (CKD). However, effective therapy is constrained currently. Autophagy is an important mechanism in kidney injury and repairment but its exact role in renal fibrosis was discrepant according to previous studies.

View Article and Find Full Text PDF

: Plant derived isolated compounds or extracts enjoy great popularity among cancer patients, although knowledge about their mode of action is unclear. The present study investigated whether the combination of two herbal drugs, the cyanogenic diglucoside amygdalin and the isothiocyanate sulforaphane (SFN), influences growth and proliferation of renal cell carcinoma (RCC) cell lines. : A498, Caki-1, and KTCTL-26 cells were exposed to low-dosed amygdalin (1 or 5 mg/mL), or SFN (5 µM) or to combined SFN-amygdalin.

View Article and Find Full Text PDF

Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice.

View Article and Find Full Text PDF

SFN promotes renal fibrosis via binding with MYH9 in chronic kidney disease.

Eur J Pharmacol

September 2024

Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China. Electronic address:

Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein.

View Article and Find Full Text PDF

Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!