Traumatic brain injury (TBI) is a major cause of persistent disabilities such as sleep-wake disorders (SWD). Rodent studies of SWD after TBI are scarce, however, because of lack of appropriate TBI models reproducing acceleration-deceleration forces and compatible with electroencephalography/myography (EEG/EMG)-based recordings of vigilance states. We therefore adapted the Marmarou impact acceleration model to allow for compatibility with EEG-headset implantation. After implantation of EEG/EMG electrodes, we induced closed TBI by a frontal, angular hit with a weight-drop device (56 rats, weight 2500 g, fall height 25 cm). Subsequently, we tested our model's usefulness for long-term studies on a behavioral, electrophysiological, and histological level. Neurological, motor, and memory deficits were assessed with the neurological severity score, open field, and novel object recognition tests, respectively. EEG/EMG recordings were performed in both Sham (n = 7) and TBI (n = 7) rats before and 1, 7, and 28 days after trauma to evaluate sleep-wake proportions and post-traumatic implant stability. Histological assessments included hematoxylin and eosin staining for parenchymal damage and hemorrhage and amyloid precursor protein staining for diffuse axonal damage. All rats survived TBI without major neurological or motor deficits. Memory function was impaired after TBI at weeks 1, 2, and 3 and recovered at week 4. EEG implants were stable for at least 1 month and enabled qualitative and quantitative sleep analyses. Histological assessments revealed no major bleedings or necrosis but intense diffuse axonal damage after TBI. This approach fulfills major pre-conditions for experimental TBI models and offers a possibility to electrophysiologically study behavioral states before and after trauma.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2015.4001DOI Listing

Publication Analysis

Top Keywords

tbi
9
traumatic brain
8
brain injury
8
recordings vigilance
8
vigilance states
8
tbi major
8
tbi models
8
neurological motor
8
histological assessments
8
diffuse axonal
8

Similar Publications

Blood leukocyte-based clusters in patients with traumatic brain injury.

Front Immunol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Leukocytes play an important role in inflammatory response after a traumatic brain injury (TBI). We designed this study to identify TBI phenotypes by clustering blood levels of various leukocytes.

Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were included.

View Article and Find Full Text PDF

Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a significant public health issue worldwide that affects millions of people every year. Cognitive impairment is one of the most common long-term consequences of TBI, seriously affect the quality of life. We aimed to develop and validate a predictive model for cognitive impairment in TBI patients, with the goal of early identification and support for those at risk of developing cognitive impairment at the time of hospital admission.

View Article and Find Full Text PDF

Background: Invasive systems are commonly used for monitoring intracranial pressure (ICP) in traumatic brain injury (TBI) and are considered the gold standard. The availability of invasive ICP monitoring is heterogeneous, and in low- and middle-income settings, these systems are not routinely employed due to high cost or limited accessibility. The aim of this consensus was to develop recommendations to guide monitoring and ICP-driven therapies in TBI using non-invasive ICP (nICP) systems.

View Article and Find Full Text PDF

Introduction: Traumatic brain injury (TBI) is a significant health issue among veterans and poses a substantial risk for pituitary injury. Consensus guidelines recommend that patients who have sustained a TBI should undergo a baseline pituitary hormonal evaluation after the primary brain insult. Patients with abnormal screening test results or with symptoms of hypopituitarism should be referred to endocrinology for a full assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!