The processing and characterization of multifunctional nanobiocomposite of biodegradable poly[(butylene succinate)-co-adipate] (PBSA) and organically modified synthetic fluorine mica (OSFM) are reported. The nanobiocomposite of PBSA with OSFM was prepared using melt- blending, and the structure and morphology of the nanocomposite were characterized using X-ray diffraction and transmission electron microscopy. The mechanical and material properties measurements showed the concurrent improvement in temperature dependence storage modulus, tensile properties, gas barrier, and thermal stability of neat PBSA after nanocomposite formation. Such improved inherent properties along with the environmentally-friendly feature are expected to widen the use of PBSA for short-term food-packaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.9484 | DOI Listing |
Biomolecules
June 2023
Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA.
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks.
View Article and Find Full Text PDFAntibiotics (Basel)
June 2023
Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.
This study presents a green protocol for the fabrication of a multifunctional smart nanobiocomposite (NBC) (ZnO-PIACSB-TiO) for secure antimicrobial and antibiofilm applications. First, shrimp shells were upgraded to a polyimidazolium amphiphilic chitosan Schiff base (PIACSB) through a series of physicochemical processes. After that, the PIACSB was used as an encapsulating and coating agent to manufacture a hybrid NBC in situ by co-encapsulating ZnONPs and TiONPs.
View Article and Find Full Text PDFRSC Adv
July 2023
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-CN) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-chemical aspects, morphological properties, and their multifunctional biological properties have been considered in the process of evaluation of the synthesized structure. The hydrogels' compressive strength and compressive modulus are 1.
View Article and Find Full Text PDFInt J Biol Macromol
August 2023
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India. Electronic address:
Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based antibacterial wound dressing would be a boon to the existing dressing as the moist environment will maintain the cooling temperate and proper exchange of atmosphere around the wound. In the present study, the multifunctional graphene with silver and ε-Poly-l-lysine reinforced into the chitosan matrix (CGAPL) was prepared as a nanobiocomposite wound dressing.
View Article and Find Full Text PDFRSC Adv
March 2023
Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University 125 South 9th Street, Suite 1000 Philadelphia PA 19107 USA.
Herein, a multifunctional nanobiocomposite was designed for biological application, amongst which hyperthermia cancer therapy application was specifically investigated. This nanobiocomposite was fabricated based on chitosan hydrogel (CS), silk fibroin (SF), water-soluble polymer polyvinyl alcohol (PVA) and iron oxide magnetic nanoparticles (FeO MNPs). CS and SF as natural compounds were used to improve the biocompatibility, biodegradability, adhesion and cell growth properties of the nanobiocomposite that can prepare this nanocomposite for the other biological applications such as wound healing and tissue engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!