A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tailored Polymeric Membranes for Mycobacterium Smegmatis Porin A (MspA) Based Biosensors. | LitMetric

Nanopores based on protein channels inserted into lipid membranes have paved the way towards a wide-range of inexpensive biosensors, especially for DNA sequencing. A key obstacle in using these biological ion channels as nanodevices is the poor stability of lipid bilayer membranes. Amphiphilic block copolymer membranes have emerged as a robust alternative to lipid membranes. While previous efforts have shown feasibility, we demonstrate for the first time the effect of polymer composition on MspA protein functionality. We show that membrane-protein interaction depends on the hydrophobic-hydrophilic ratio (f-ratio) of the block copolymer. These effects are particularly pronounced in asymmetric protein pores like MspA compared to the cylindrical α-Hemolysin pore. A key effect of membrane-protein interaction is the increased 1/f noise. After first showing increases in 1/f behaviour arise from increased substate activity, the noise power spectral density was used as a qualitative tool for understanding protein-membrane interactions in polymer membranes. Polymer compositions with f-ratios close to lipid membranes caused noise behaviour not observed in lipid membranes. However, by modifying the f-ratio using a modular synthetic approach, we were able to design a block copolymer exhibiting noise properties similar to a lipid membrane, albeit with better stability. Thus, by careful optimization, block copolymer membranes can emerge as a robust alternative for protein-pore based nano-biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582436PMC
http://dx.doi.org/10.1039/C5TB00383KDOI Listing

Publication Analysis

Top Keywords

lipid membranes
16
block copolymer
16
membranes
9
copolymer membranes
8
robust alternative
8
membrane-protein interaction
8
lipid
6
tailored polymeric
4
polymeric membranes
4
membranes mycobacterium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!