Background: Patients with primary membranous nephropathy (MN) and persistent nephrotic syndrome have a high risk of progression to end-stage renal disease. The Ponticelli protocol (steroids with alkylating agents) is the most effective immunosuppressive therapy for this condition, but it has severe adverse effects. Tacrolimus and rituximab have demonstrated efficacy for remission of nephrotic syndrome in MN with a safer profile. However, the published evidence is largely based on small or short-term observational studies, historical cohorts, comparisons with conservative therapy or clinical trials without appropriate control groups, and there is no head-to-head comparison with the Ponticelli protocol.
Methods: The STARMEN randomized clinical trial will compare the efficacy of sequential tacrolimus-rituximab therapy with a modified Ponticelli protocol (steroids plus cyclophosphamide). The trial will also evaluate the role of antibodies against the M-type phospholipase A2 receptor (anti-PLA2R) and other antibodies as markers of response to treatment and long-term prognosis.
Results: The trial has already started with 23 patients having been enrolled as of 1 April 2015, an estimated 21.7% of the estimated sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581392 | PMC |
http://dx.doi.org/10.1093/ckj/sfv075 | DOI Listing |
BMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Public Courses, Shandong University of Science and Technology, Taian, China.
College students' learning engagement not only significantly influences their academic performance but also plays a vital role in their future career development. Ensuring that students maintain high levels of engagement is essential for society's goal of cultivating high-quality talent. Therefore, understanding the key factors that drive student engagement is critical for educators as they develop effective strategies to foster this engagement.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Roswell Park Cancer Institute, Buffalo, NY, United States.
Background: Data in clear cell renal cell carcinoma (ccRCC) xenografts defined the seleno-L-methionine (SLM) dose and the plasma selenium concentrations associated with the enhancement of HIF1α/2α degradation, stabilization of tumor vasculature, enhanced drug delivery, and efficacy of axitinib. The data provided the rationale for the development of this phase I clinical trial of SLM and axitinib in advanced or metastatic relapsed ccRCC.
Patients And Methods: Patients were ≥18 years with histologically and radiologically confirmed advanced or metastatic ccRCC who had received at least one prior systemic therapy, which could include axitinib (last dose ≥6 months prior to enrollment).
Oncol Lett
March 2025
Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Ankara 06230, Turkey.
Glioblastoma multiforme (GBM) is a tumor with a high refractory rate to immunotherapy and a low tumor mutational burden phenotype, leading to limited immunogenic neoantigens. The present study aimed to investigate the sequential use of immunotherapy and bevacizumab in patients with GBM, exploring the clinical outcomes and potential complications. Patients received various combinations of immunotherapy and bevacizumab after standard treatment, including surgery, radiotherapy and temozolomide.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Department of Chemistry, 96 JinZhai Road, 230026, Hefei, CHINA.
Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!