Background: Engineering Saccharomyces cerevisiae to produce heterologous cellulases is considered as a promising strategy for production of bioethanol from lignocellulose. The production of cellulase is usually pursued by one of the two strategies: displaying enzyme on the cell surface or secreting enzyme into the medium. However, to our knowledge, the combination of the two strategies in a yeast strain has not been employed.
Results: In this study, heterologous endoglucanase (EG) and cellobiohydrolase I (CBHI) were produced in a β-glucosidase displaying S. cerevisiae strain using cell-surface display, secretion, or a combined strategy. Strains EG-D-CBHI-D and EG-S-CBHI-S (with both enzymes displayed on the cell surface or with both enzymes secreted to the surrounding medium) showed higher ethanol production (2.9 and 2.6 g/L from 10 g/L phosphoric acid swollen cellulose, respectively), than strains EG-D-CBHI-S and EG-S-CBHI-D (with EG displayed on cell surface and CBHI secreted, or vice versa). After 3-cycle repeated-batch fermentation, the cellulose degradation ability of strain EG-D-CBHI-D remained 60 % of the 1st batch, at a level that was 1.7-fold higher than that of strain EG-S-CBHI-S.
Conclusions: This work demonstrated that placing EG and CBHI in the same space (on the cell surface or in the medium) was favorable for amorphous cellulose-based ethanol fermentation. In addition, the cellulolytic yeast strain that produced enzymes by the cell-surface display strategy performed better in cell-recycle batch fermentation compared to strains producing enzymes via the secretion strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584016 | PMC |
http://dx.doi.org/10.1186/s13068-015-0344-6 | DOI Listing |
Int J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA. Electronic address:
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation.
View Article and Find Full Text PDFArtif Organs
January 2025
Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!