A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field. | LitMetric

General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field.

J Chem Theory Comput

Department of Biomedical Engineering and Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: June 2015

Classical molecular mechanics force fields typically model interatomic electrostatic interactions with point charges or multipole expansions, which can fail for atoms in close contact due to the lack of a description of penetration effects between their electron clouds. These short-range penetration effects can be significant and are essential for accurate modeling of intermolecular interactions. In this work we report parametrization of an empirical charge-charge function previously reported (Piquemal J.-P.; J. Phys. Chem. A2003, 107, 10353) to correct for the missing penetration term in standard molecular mechanics force fields. For this purpose, we have developed a database (S101×7) of 101 unique molecular dimers, each at 7 different intermolecular distances. Electrostatic, induction/polarization, repulsion, and dispersion energies, as well as the total interaction energy for each complex in the database are calculated using the SAPT2+ method (Parker T. M.; J. Chem. Phys.2014, 140, 094106). This empirical penetration model significantly improves agreement between point multipole and quantum mechanical electrostatic energies across the set of dimers and distances, while using only a limited set of parameters for each chemical element. Given the simplicity and effectiveness of the model, we expect the electrostatic penetration correction will become a standard component of future molecular mechanics force fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570253PMC
http://dx.doi.org/10.1021/acs.jctc.5b00267DOI Listing

Publication Analysis

Top Keywords

molecular mechanics
16
mechanics force
16
force fields
12
electrostatic penetration
8
penetration effects
8
penetration
6
electrostatic
5
molecular
5
general model
4
model treating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!