Enrichment of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, and Sox2 in benign and malignant vascular tumors.

BMC Clin Pathol

Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX USA.

Published: September 2015

Background: The "stem cell theory of cancer" states that a subpopulation of cells with stem cell-like properties plays a central role in the formation, sustainment, spread, and drug resistant characteristics of malignant tumors. Recent studies have isolated distinct cell populations from infantile hemangiomas that display properties equivalent to aberrant progenitor cells, suggesting that, in addition to malignant tumors, benign tumors may also contain a stem cell-like component.

Methods: In this study, the expression levels of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, Sox2, and Klf4 were examined via immunohistochemistry in a panel of 71 benign, borderline, and malignant vascular tumors including capillary hemangioma, cavernous hemangioma, granulomatous hemangioma, venous hemangioma, hemangioendothelioma, hemangiopericytoma, and angiosarcoma. Antigenicity for each protein was quantified based on staining intensity and percentage of tissue positive for each antigen, and subsequently compared to data obtained from two control tissue sets: 10 vascular tissues and a panel of 58 various malignant sarcomas.

Results And Discussion: With the exception of Myc (which was only present in a subset of benign, borderline, and malignant tumors), Oct4, Nanog, Sox2, and Klf4 were detectable at variable levels across both normal and diseased tissues. Semi-quantitative evaluation of our immunohistochemical staining revealed that protein expression of Oct4, Nanog, Myc, and Sox2, but not Klf4, was significantly increased in benign, borderline, and malignant vascular tumors relative to non-diseased vascular tissue controls. Interestingly, the enhanced levels of Oct4, Nanog, Myc, and Sox2 protein were approximately equivalent between benign, borderline, and malignant vascular tumors.

Conclusions: These findings provide supporting evidence that enrichment for proteins involved in pluripotency is not restricted solely to malignant tumors as is suggested by the "stem cell theory of cancer", but additionally extends to common benign vascular tumors such as hemangiomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584003PMC
http://dx.doi.org/10.1186/s12907-015-0018-0DOI Listing

Publication Analysis

Top Keywords

oct4 nanog
20
nanog myc
16
myc sox2
16
malignant vascular
16
vascular tumors
16
malignant tumors
16
benign borderline
16
borderline malignant
16
sox2 klf4
12
malignant
9

Similar Publications

Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis.

J Ethnopharmacol

January 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.

View Article and Find Full Text PDF

Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC.

View Article and Find Full Text PDF

Salivary gland carcinomas encompass a broad group of malignant lesions characterized by varied prognoses. Stem cells have been associated with the potential for self-renewal and differentiation to various subpopulations, resulting in histopathological variability and diverse biological behavior, features that characterize salivary gland carcinomas. This study aims to provide a thorough systematic review of immunohistochemical studies regarding the expression and prognostic significance of stem cell markers between different malignant salivary gland tumors (MSGTs).

View Article and Find Full Text PDF

MicroRNA-21 as a Regulator of Cancer Stem Cell Properties in Oral Cancer.

Cells

January 2025

Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia.

Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy with poor prognosis, mainly due to the presence of cancer stem cells (CSCs), a small subpopulation of cells that contribute to therapy resistance and tumor progression. The principal objective of this study was to investigate the role of miRNA-21 in the maintenance of cancer cell stemness and the possibility of altering it. The CD44 antigen was used as a marker for CSC isolation from oral cancer cell cultures.

View Article and Find Full Text PDF

Optimizing Stem Cell Expansion: The Role of Substrate Stiffness in Enhancing Dental Pulp Stem Cell Quiescence and Regeneration.

J Endod

January 2025

Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada. Electronic address:

Introduction: Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway.

Methods: Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!