Novel 6-methyluracil derivatives with ω-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3 d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of β-amyloid peptide plaques in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201500334DOI Listing

Publication Analysis

Top Keywords

6-methyluracil derivatives
12
alzheimer's disease
8
derivatives bifunctional
4
bifunctional acetylcholinesterase
4
acetylcholinesterase inhibitors
4
inhibitors treatment
4
treatment alzheimer's
4
disease novel
4
novel 6-methyluracil
4
derivatives ω-substituted
4

Similar Publications

We considered it timely to test the applicability of transferable multipole pseudo-atoms for restoring inner-crystal electronic force density fields. The procedure was carried out on the crystal of 1,3-bis(2-hydroxyethyl)-6-methyluracil, and some derived properties of the scalar potential and vector force fields were compared with those obtained from the experimental multipole model and from the aspherical pseudo-atom model with parameters fitted to the calculated structure factors. The procedure was shown to accurately replicate the general vector-field behavior, the peculiarities of the quantum potentials and the characteristics of the force-field pseudoatoms, such as charge, shape and volume, as well as to reproduce the relative arrangement of atomic and pseudoatomic zero-flux surfaces along internuclear regions.

View Article and Find Full Text PDF

Synthesis and antiviral activity of 1,2,3-triazolyl nucleoside analogues with -acetyl-d-glucosamine residue.

Nucleosides Nucleotides Nucleic Acids

July 2023

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation.

A series of 1,2,3-triazolyl nucleoside analogues bearing -acetyl-D-glucosamine residue was synthesized by the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of 1-ω-alkynyl derivatives of uracil, 6-methyluracil, thymine and 3,4,6-tri--acetyl-2-deoxy-2-acetamido-β-D-glucopyranosyl azide. Antiviral assays revealed the lead compound which showed both the same activity against the influenza virus A H1N1 (IC=70.7 µM) as the antiviral drug Rimantadine in control (IC=77 µM) and good activity against Coxsackievirus B3 (IC=13.

View Article and Find Full Text PDF

Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning.

Eur J Med Chem

January 2023

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia; Kazan Federal University, 18 Kremlyovskaya str, Kazan, 420008, Russia.

A series of new compounds in which uracil and 3,6-dimethyluracil moieties are bridged with different spacers were prepared and evaluated in vitro for the acetyl- and butyrylcholinesterase (AChE and BChE) inhibitory activities. These bisuracils are shown to be very effective inhibitors of AChE, inhibiting the enzyme at nano- and lower molar concentrations with extremely high selectivity for AChE vs. BChE.

View Article and Find Full Text PDF
Article Synopsis
  • Novel derivatives of 6-methyluracil and 2,4-quinazoline-2,4-dione were created by adding benzoate groups in polymethylene chains connected to the nitrogen atoms of the pyrimidine ring.
  • The variations included different lengths of polymethylene chains (from tri- to hexamethylene) and different substituents on the benzene rings, such as esters and salts.
  • Biological tests showed these compounds effectively reduced β-amyloid plaques and showed promise for treating memory issues in a model of Alzheimer's disease.
View Article and Find Full Text PDF

An unprecedented organocatalytic asymmetric construction of novel six-membered carbocycle fused uracils has been demonstrated by the reaction of the remotely enolizable 6-methyluracil-5-carbaldehydes with 2-bromoenals. The reaction involves an N-heterocyclic carbene-catalyzed formal [4 + 2] annulation of -quinodimethane (QDM) dienolates with α,β-unsaturated acylazoliums, followed by a cascade lactone formation/decarboxylation process. This protocol unlocks a new platform to access enantioenriched carbocycle-fused uracils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!