Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Public health surveillance programs in the U.S. are undergoing landmark changes with the availability of electronic health records and advancements in information technology. Injury narratives gathered from hospital records, workers compensation claims or national surveys can be very useful for identifying antecedents to injury or emerging risks. However, classifying narratives manually can become prohibitive for large datasets. The purpose of this study was to develop a human-machine system that could be relatively easily tailored to routinely and accurately classify injury narratives from large administrative databases such as workers compensation. We used a semi-automated approach based on two Naïve Bayesian algorithms to classify 15,000 workers compensation narratives into two-digit Bureau of Labor Statistics (BLS) event (leading to injury) codes. Narratives were filtered out for manual review if the algorithms disagreed or made weak predictions. This approach resulted in an overall accuracy of 87%, with consistently high positive predictive values across all two-digit BLS event categories including the very small categories (e.g., exposure to noise, needle sticks). The Naïve Bayes algorithms were able to identify and accurately machine code most narratives leaving only 32% (4853) for manual review. This strategy substantially reduces the need for resources compared with manual review alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2015.06.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!