The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585943 | PMC |
http://dx.doi.org/10.1038/srep14520 | DOI Listing |
Child Abuse Negl
January 2025
Faculty of Medicine, University of Concepción, Chile.
Background: Child sexual exploitation (CSE) involves using a child or youth as a sexual object in exchange for remuneration, reward, or favors, meeting their survival needs, and also serving the perpetrator's aims for sexual, social, or economic gain.
Objective: The present study addresses the prevalence of CSE in Spain.
Participants: A representative sample of 4024 secondary school adolescents from 14 to 17 years old (M = 15.
Ultramicroscopy
January 2025
National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark (DTU), Kgs. Lyngby, Denmark. Electronic address:
Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China. Electronic address:
Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.
View Article and Find Full Text PDFBiomater Adv
January 2025
Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany.
Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.
Heterogeneous integration of emerging two-dimensional (2D) materials with mature three-dimensional (3D) silicon-based semiconductor technology presents a promising approach for the future development of energy-efficient, function-rich nanoelectronic devices. In this study, we designed a mixed-dimensional junction structure in which a 2D monolayer (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!