Forest degradation is a global environmental issue, but its definition is problematic. Difficulties include choosing appropriate reference states, timescales, thresholds, and forest values. We dispense with many such ambiguities by interpreting forest degradation through the frame of ecological resilience, and with reference to forest dynamics. Specifically, we define forest degradation as a state of anthropogenically induced arrested succession, where ecological processes that underlie forest dynamics are diminished or severely constrained. Metrics of degradation might include those that reflect ecological processes shaping community dynamics, notably the regeneration of plant species. Arrested succession implies that management intervention is necessary to recover successional trajectories. Such a definition can be applied to any forest ecosystem, and can also be extended to other ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2015.08.001 | DOI Listing |
Inflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!