During immuno-mediated demyelinating lesions, endocannabinoid system participates in both inflammatory and neurodegenerative damage through several mechanisms that involve neuronal and immune cells. Here, we constructed lentiviral vector to upregulate CB1 receptor (CB1R) in the lumbar spinal cord 5-6 region and observe the effect of clinical score and possible mechanism on the occurrence and development of experimental autoimmune encephalomyelitis (EAE). The results show that overexpression of CB1R delayed the onset of clinical signs and ameliorated the severity of disease. Overexpression of CB1R significantly inhibited the expression of NF-kB/p65 and TLR-4 as well as levels of IL-1β, IL-6, and TNF-α, followed by a decrease of IL-17 and an increase of IL-10 in the spinal cord of mice. The percentage of M1 marker CD11b(+)CD16/32(+) cells was decreased, while the percentage of M2 marker CD11b(+)CD206(+) and CD11b(+)IL-10(+) cells was elevated in splenic mononuclear cells (MNCs) of mice with overexpression of CB1R. Interestingly, overexpression of CB1R dramatically enhanced the expression of neurotrophic NT-3, BDNF, and GDNF in the spinal cord. These results indicate that local overexpression of CB1R in the spinal cord exhibited neuroprotective effects in EAE, mainly suppressing inflammatory microenvironment and elevating neurotrophic factors, slightly declining IL-1β and IL-17 in the spleen, and increased IL-10 in the brain. Its complexity remains to be carefully considered and further studied in further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-015-0656-9DOI Listing

Publication Analysis

Top Keywords

overexpression cb1r
20
spinal cord
16
cb1 receptor
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
percentage marker
8
cb1r
6
overexpression
5
neuroprotective driven
4
driven upregulation
4

Similar Publications

Up to 45% of patients surviving from transient global cerebral ischemia (GCI) after cardiac arrest develop post-global cerebral ischemia depression (PGCID), but how to treat PGCID is clinically unknown. Here we find that cannabinoid type-1 receptor (CBR) antagonists, CBR knockout and endocannabinoid (eCB) synthesis inhibition block acute stress-induced PGCID. Application of acute stress to GCI mice increases CBR activity from ventromedial prefrontal cortical (vmPFC) terminals synapsing with the basolateral amygdala (BLA) neurons, indicating the involvement of increased vmPFC-BLA synaptic eCB signaling in PGCID induction.

View Article and Find Full Text PDF

Background: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT.

View Article and Find Full Text PDF

Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB receptor (CBR), opioid receptor (DOR), and CBR-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs.

View Article and Find Full Text PDF

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism.

View Article and Find Full Text PDF

Macrophage stimulating protein is a novel transcriptional target of estrogen related receptor gamma in alcohol-intoxicated mice.

Cell Signal

April 2024

Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Article Synopsis
  • Macrophage stimulating protein (MSP) is a liver-produced protein that activates the RON receptor and plays an essential role in immune functions like cell survival and phagocytosis.
  • The study reveals that alcohol exposure specifically increases MSP expression in the liver through the upregulation of the ERRγ protein.
  • Inhibition of the cannabinoid receptor CB1R prevents this increase, and experiments show that ERRγ directly binds to the MSP gene promoter, regulating its expression, thus providing insights into alcohol's effects on gene regulation in the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!