Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12390DOI Listing

Publication Analysis

Top Keywords

expression sugar
16
sugar transporters
16
aba ga3
12
phloem area
12
leaves berries
12
vitis vinifera
12
full veraison
12
gene expression
12
carbon allocation
8
non-structural carbohydrates
8

Similar Publications

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.

Background: Our previous studies reported that D-galactose (D-gal) administration for four to eight weeks caused metabolic disturbance, brain mitochondrial dysfunction, and brain aging, leading to cognitive dysfunction in similar with natural aging condition. Spermidine is a polyamine that can be found naturally. Spermidine has been showed the beneficial effects on various models, such as attenuating metabolic/gut impairments in obesity, and ameliorating memory loss in aged model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) is developing, characterizing, and distributing novel mouse models expressing humanized, clinically relevant genetic risk factors. Models expressing human-relevant risk genetic risk factors are expected to better phenocopy LOAD than widely used transgenic models.

Method: Here, two genetic risk factors APOE4 and Trem2*R47H, were incorporated into C57BL/6J (B6) mice along with humanized amyloid-beta to produce the LOAD2 model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!