Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage.

Angew Chem Int Ed Engl

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (USA).

Published: November 2015

In spite of recent progress, there is still a lack of reliable organic electrodes for Li storage with high comprehensive performance, especially in terms of long-term cycling stability. Herein, we report an ideal polymer electrode based on anthraquinone, namely, polyanthraquinone (PAQ), or specifically, poly(1,4-anthraquinone) (P14AQ) and poly(1,5-anthraquinone) (P15AQ). As a lithium-storage cathode, P14AQ showed exceptional performance, including reversible capacity almost equal to the theoretical value (260 mA h g(-1); >257 mA h g(-1) for AQ), a very small voltage gap between the charge and discharge curves (2.18-2.14=0.04 V), stable cycling performance (99.4% capacity retention after 1000 cycles), and fast-discharge/charge ability (release of 69% of the low-rate capacity or 64% of the energy in just 2 min). Exploration of the structure-performance relationship between P14AQ and related materials also provided us with deeper understanding for the design of organic electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201506673DOI Listing

Publication Analysis

Top Keywords

reliable organic
8
organic electrodes
8
polyanthraquinone reliable
4
organic electrode
4
electrode stable
4
stable fast
4
fast lithium
4
lithium storage
4
storage spite
4
spite progress
4

Similar Publications

A passive sampler was used to effectively monitor trace volatile organic compound (VOC) concentrations in the atmosphere. VOCs are typically extracted from passive samplers using CS, which is a volatile and hazardous chemical that can leave residues and damage the mass spectrometry (MS) system during gas chromatography (GC)-MS. This study aims to develop and validate alternative solvent extraction methods using acetone, ethanol, n-hexane, and a solution of 99% acetone and 1% CS (ATCS) for VOCs from passive samplers using a standard GC-MS system.

View Article and Find Full Text PDF

While amorphous indium gallium zinc oxide (α-IGZO) thin film transistors (TFTs) are practical alternatives to silicon-based TFTs, their field-effect mobility (∼50 cm/(V s), depending on deposition conditions) remains insufficient to meet the growing demands of high-resolution active-matrix organic light-emitting diode (AMOLED) displays. The need for high-performance oxide TFTs with mobility ≥100 cm/(V s) has become critical to meet the evolving display industry's requirements. This study explored the development of high-mobility hexagonal homologous compound (HC) indium zinc tin oxide (IZTO) TFTs as an alternative to α-IGZO TFTs.

View Article and Find Full Text PDF

ConspectusAromatic functionalization reactions are some of the most fundamental transformations in organic chemistry and have been a mainstay of chemical synthesis for over a century. Reactions such as electrophilic and nucleophilic aromatic substitution (EAS and SAr, respectively) represent the two most fundamental reaction classes for arene elaboration and still today typify the most utilized methods for aromatic functionalization. Despite the reliable reactivity accessed by these venerable transformations, the chemical space that can be accessed by EAS and SAr reactions is inherently limited due to the electronic requirements of the substrate.

View Article and Find Full Text PDF

Accurate prediction of polymer properties using molecular dynamics (MD) simulations requires a properly relaxed starting structure. Polymer models built from scratch by specialized algorithms (self-avoiding random walk, Monte Carlo, etc.) are far from relaxed and, moreover, often possess a large number of structural defects: close contacts between atoms, wrong bond distances, voids, unfavorable molecular conformations or packing, etc.

View Article and Find Full Text PDF

Magnetic Solid-Phase Extraction of Benzoic Acids in Fruit Juices Using Hydrophilic Metal-Organic Framework MIL-101(Cr) Coated with Magnetic Nanoparticles.

J Sep Sci

March 2025

Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, China.

In this study, magnetic FeO-coated metal-organic framework composites, CONH-MIL-101(Cr)/FeO, were synthesized by depositing FeO particles on the surface of amidated MIL-101(Cr). The scanning electron microscope images show that the MIL-101(Cr) crystals were uniformly coated by FeO particles. The magnetic hysteresis curve of CONH-MIL-101(Cr)/FeO reveals a saturated magnetization value of 23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!