Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P < 0.05) and post hoc Newman-Keuls test. All brands of glass-ionomer showed a small inherent setting exotherm in the absence of heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P < 0.05) and did not reflect the nominal power of the lamps, because those lamps have variable cooling systems, and are designed to optimize light output, not heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-015-5578-0 | DOI Listing |
Materials (Basel)
January 2025
Daegyung Technology Application Division, Korea Institute of Industrial Technology, Daegu-si 42994, Republic of Korea.
In semiconductor inspection equipment, a chuck used to hold a wafer is equipped with a cooling or heating system for temperature uniformity across the surface of the wafer. Surface temperature uniformity is important for increasing semiconductor inspection speed. Triply periodic minimal surfaces (TPMSs) are proposed to enhance temperature uniformity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
Surface wettability, defined by the contact angle, describes the ability of a liquid to spread over, absorb or adhere to a solid surface. Surface wetting analysis is important in many applications, such as lubrication, heat transfer, painting and wherever liquids interact with solid surfaces. The behavior of liquids on surfaces depends mainly on the texture and chemical properties of the surface.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Centre of Nanoheterostructure Physics, Ioffe Institute, Saint Petersburg 194021, Russia.
The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
Paper-based packaging materials have gained attention from academia and industry for their outstanding environmental sustainability advantages. However, they still encounter major challenges, such as low mechanical strength and inadequate functionality, hindering the replacement of unsustainable packaging materials. Inspired by the remarkable strength of trees provided by cellulose fibers and the water and heat protection of trees provided by bark, this study developed a new biomass-based packaging material (SNC-C) that combines strength, thermal insulation, and water resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!