Bacterial nanocellulose (BNC) is chemically identical with plant cellulose but free of byproducts like lignin, pectin, and hemicelluloses, featuring a unique reticulate network of fine fibers. BNC sheets are mostly obtained by static cultivation. Now, a Horizontal Lift Reactor may provide a cost efficient method for mass production. This is of particular interest as BNC features several properties of an ideal wound dressing although it exhibits no bactericidal activity. Therefore, BNC was functionalized with the antiseptics povidone-iodine (PI) and polihexanide (PHMB). Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Antiseptics release was based on diffusion and swelling according to Ritger-Peppas equation. PI-loaded BNC demonstrated a delayed release compared to PHMB due to a high molar drug mass and structural changes induced by PI insertion into BNC that also increased the compressive strength of BNC samples. Biological assays demonstrated high biocompatibility of PI-loaded BNC in human keratinocytes but a distinctly lower antimicrobial activity against Staphylococcus aureus compared to PHMB-loaded BNC. Overall, BNC loaded with PHMB demonstrated a better therapeutic window. Moreover, compressive and tensile strength were not changed by incorporation of PHMB into BNC, and solidity during loading and release could be confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-015-5571-7DOI Listing

Publication Analysis

Top Keywords

bnc
11
bacterial nanocellulose
8
loading release
8
pi-loaded bnc
8
antimicrobial functionalization
4
functionalization bacterial
4
nanocellulose loading
4
loading polihexanide
4
polihexanide povidone-iodine
4
povidone-iodine bacterial
4

Similar Publications

The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration.

View Article and Find Full Text PDF

Chronic exertional compartment syndrome is a well-described potential cause of leg pain in high-level athletes and soldiers. Surgical treatment of chronic exertional compartment syndrome usually involves fasciotomy, with a reported rate of complications of up to 16%, including failure of complete compartmental release and delayed return to normal daily activity, which can take up to 6 to 12 weeks. The use of a minimally invasive approach under ultrasound guidance seems to improve clinical outcomes in young active patients.

View Article and Find Full Text PDF

-CoFeO/TiCT/BNC Hybrid Aerogels with Modulation Impedance Matching for Electromagnetic Wave Absorption and Health Monitoring.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.

View Article and Find Full Text PDF

Background: Bacterial nanocellulose (BNC) is typically produced through fermentation using Hestrin Schramm (HS) médium. However, its high cost limits its use in industry. Moreover, curcumin, as a model substance, is a potential bioactive compound but has low bioavailability.

View Article and Find Full Text PDF

In this study, nanostructured thin films were produced from thymoquinone (TQ)-loaded composites encapsulated with different ratios of bacterial nanocellulose (BNC) to chitosan (CS). The study aimed to investigate their characterization, antibacterial effects, and potential as drug film coating materials. Chemical features and morphological characteristics were determined, and release tests and antibacterial assays were conducted on the thin film layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!