Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity.

Sci Total Environ

Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Hölderlinstr 12, 72074 Tübingen, Germany.

Published: January 2016

Metal pollution is a global problem in estuaries due to the legacy of historic contamination and currently increasing metal emissions. However, the establishment of water and sediment standards or management actions in brackish systems has been difficult because of the inherent transdisciplinary nature of estuarine processes. According to the European Commission, integrative comprehension of fate and effects of contaminants in different compartments of these transitional environments (estuarine sediment, water, biota) is still required to better establish, assess and monitor the good ecological status targeted by the Water Framework Directive. Thus, the present study proposes a holistic overview and conceptual model for the environmental fate of metals and their toxicity effects on aquatic organisms in estuaries. This includes the analysis and integration of biogeochemical processes and parameters, metal chemistry and organism physiology. Sources of particulate and dissolved metal, hydrodynamics, water chemistry, and mechanisms of toxicity are discussed jointly in a multidisciplinary manner. It is also hypothesized how these different drivers of metal behaviour might interact and affect metal concentrations in diverse media, and the knowledge gaps and remaining research challenges are pointed. Ultimately,estuarine physicochemical gradients, biogeochemical processes, and organism physiology are jointly coordinating the fate and potential effects of metals in estuaries, and both realistic model approaches and attempts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.09.045DOI Listing

Publication Analysis

Top Keywords

fate effects
8
conceptual model
8
biogeochemical processes
8
organism physiology
8
metal
7
metal fate
4
effects
4
estuaries
4
effects estuaries
4
estuaries review
4

Similar Publications

The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.

View Article and Find Full Text PDF

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

The European regulatory system for plant protection products-cause of a "Silent Spring" or highly advanced and protective?

Integr Environ Assess Manag

January 2025

Industrieverband Agrar e. V. (IVA), Wissenschaft und Innovation, Frankfurt am Main, Germany.

Current publications that are shaping public perception repeatedly claim that residues of plant protection products (PPP) in the environment demonstrate gaps in assessing the exposure and effects of PPP, allegedly revealing the inability of the European regulatory system to prevent environmental contamination and damage such as biodiversity decline. The hypothesis is that environmental risk assessments rely on inappropriate predictive models that underestimate exposure and do not explicitly account for the impact of combinations of environmental stressors and physiological differences in stress responses. This article puts this criticism into context to allow for a more balanced evaluation of the European regulatory system for PPP.

View Article and Find Full Text PDF

Freshwater ecotoxicity characterization factors for PFASs.

Integr Environ Assess Manag

January 2025

Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, Sweden.

This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.

View Article and Find Full Text PDF

Environmental fate and aquatic risk assessment of oxyfluorfen in California rice fields.

Integr Environ Assess Manag

January 2025

Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, United States.

The herbicide oxyfluorfen [OXY; 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] recently emerged as a potential solution to combat herbicide resistance in California rice. Proposed as a preemergent applied preflood to soil, products are in development for use with OXY-tolerant rice strains. Currently, OXY is not registered for use with rice and its use in or near aquatic resources is restricted due to its high aquatic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!