Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation.

Biochim Biophys Acta

Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States. Electronic address:

Published: December 2015

Thioredoxin 1 (Trx1) is а antioxidant protein that regulates protein disulfide bond reduction, transnitrosylation, denitrosylation and other redox post-translational modifications. In order to better understand how Trx1 modulates downstream protective cellular signaling events following cardiac ischemia, we conducted an expression proteomics study of left ventricles (LVs) after thoracic aortic constriction stress treatment of transgenic mice with cardiac-specific over-expression of Trx1, an animal model that has been proven to withstand more stress than its non-transgenic littermates. Although previous redox post-translational modifications proteomics studies found that several cellular protein networks are regulated by Trx1-mediated disulfide reduction and transnitrosylation, we found that Trx1 regulates the expression of a limited number of proteins. Among the proteins found to be upregulated in this study was SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues and an important regulator of cardiac development. The observation of SMYD1 induction by Trx1 following thoracic aortic constriction stress is consistent with the retrograde fetal gene cardiac protection hypothesis. The results presented here suggest for the first time that, in addition to being a master redox regulator of protein disulfide bonds and nitrosation, Trx1 may also modulate lysine methylation, a non-redox post-translational modification, via the regulation of SMYD1 expression. Such crosstalk between redox signaling and a non-redox PTM regulation may provide novel insights into the functions of Trx1 that are independent from its immediate function as a protein reductase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721509PMC
http://dx.doi.org/10.1016/j.bbapap.2015.09.006DOI Listing

Publication Analysis

Top Keywords

master redox
8
redox regulator
8
trx1
8
lysine methylation
8
protein disulfide
8
reduction transnitrosylation
8
redox post-translational
8
post-translational modifications
8
thoracic aortic
8
aortic constriction
8

Similar Publications

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

It is currently unclear how Pseudomonadota, a phylum that originated around the time of the Great Oxidation Event, became one of the most abundant and diverse bacterial phyla on Earth, with metabolically versatile members colonizing a wide range of environments with different O2 concentrations. Here, we address this question by studying isoprenoid quinones, which are central components of energy metabolism covering a wide range of redox potentials. We demonstrate that a dynamic repertoire of quinone biosynthetic pathways accompanied the diversification of Pseudomonadota.

View Article and Find Full Text PDF

The synthesis and whole characterization by a multitechnique approach of an unprecedented dysprosium(iii) 2D metal organic framework (MOF), involving the redox-active tetrathiafulvalene (TTF)-based linker TTF-tetracarboxylate (TTF-TC), are herein reported. The single-crystal X-ray structure, formulated as [Dy(TTF-TC)(HO)]·21HO (1), reveals a complex 2D topology, with hexanuclear Dy clusters as secondary building units (SBUs) interconnected by five linkers, stacked almost parallel in each layer and eclipsed along the [111] direction, leading to the formation of 1D channels filled by water molecules. The mixed valence of the TTF units is confirmed by both bond distance analysis, Raman microscopy and diffuse reflectance spectroscopy, and further supported by band structure calculations, which also predict activated conductivity for this material.

View Article and Find Full Text PDF

NRF2 signaling and amino acid metabolism in cancer.

Free Radic Res

October 2024

College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea.

Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer.

View Article and Find Full Text PDF

CHAC1, an essential regulator of oxidative stress and ferroptosis, is increasingly recognized for its significant roles in these cellular processes and its impact on various human diseases and cancers. This review aims to provide a comprehensive overview of CHAC1's molecular functions, regulatory mechanisms, and effects in different pathological contexts. Specifically, the study objectives are to elucidate the biochemical pathways involving CHAC1, explore its regulatory network, and discuss its implications in disease progression and potential therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!