AI Article Synopsis

Article Abstract

Background: Nowadays, more and more traffic accidents occur because of driver fatigue.

Objective: In order to reduce and prevent it, in this study, a calculation method using PERCLOS (percentage of eye closure time) parameter characteristics based on machine vision was developed. It determined whether a driver's eyes were in a fatigue state according to the PERCLOS value.

Methods: The overall workflow solutions included face detection and tracking, detection and location of the human eye, human eye tracking, eye state recognition, and driver fatigue testing. The key aspects of the detection system incorporated the detection and location of human eyes and driver fatigue testing. The simplified method of measuring the PERCLOS value of the driver was to calculate the ratio of the eyes being open and closed with the total number of frames for a given period.

Results: If the eyes were closed more than the set threshold in the total number of frames, the system would alert the driver.

Conclusion: Through many experiments, it was shown that besides the simple detection algorithm, the rapid computing speed, and the high detection and recognition accuracies of the system, the system was demonstrated to be in accord with the real-time requirements of a driver fatigue detection system.

Download full-text PDF

Source
http://dx.doi.org/10.3233/THC-150982DOI Listing

Publication Analysis

Top Keywords

driver fatigue
16
detection
8
fatigue detection
8
eye state
8
detection location
8
location human
8
human eye
8
fatigue testing
8
detection system
8
total number
8

Similar Publications

Fatigue driving is one of the potential factors threatening road safety, and monitoring drivers' mental state through electroencephalography (EEG) can effectively prevent such risks. In this paper, a new model, DE-GFRJMCMC, is proposed for selecting critical channels and optimal feature subsets from EEG data to improve the accuracy of fatigue driving recognition. The model is validated on the SEED-VIG dataset.

View Article and Find Full Text PDF

Driver fatigue recognition using limited amount of individual electroencephalogram.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Republic of Korea.

Unlabelled: This study aims to create a fatigue recognition system that utilizes electroencephalogram (EEG) signals to assess a driver's physiological and mental state, with the goal of minimizing the risk of road accidents by detecting driver fatigue regardless of physical cues or vehicle attributes. A fatigue state recognition system was developed using transfer learning applied to partial ensemble averaged EEG power spectral density (PSD). The study utilized layer-wise relevance propagation (LRP) analysis to identify critical cortical regions and frequency bands for effective fatigue discrimination.

View Article and Find Full Text PDF

Objective: This study aimed to explore the clinical efficacy and safety of durvalumab combined with albumin-bound paclitaxel and carboplatin as neoadjuvant therapy for resectable stage III Non-small Cell Lung Cancer (NSCLC).

Methods: A single-arm open-label phase Ib study was conducted. A total of 40 patients with driver gene-negative resectable stage III NSCLC were enrolled.

View Article and Find Full Text PDF

Semantically-Enhanced Feature Extraction with CLIP and Transformer Networks for Driver Fatigue Detection.

Sensors (Basel)

December 2024

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

Drowsy driving is a leading cause of commercial vehicle traffic crashes. The trend is to train fatigue detection models using deep neural networks on driver video data, but challenges remain in coarse and incomplete high-level feature extraction and network architecture optimization. This paper pioneers the use of the CLIP (Contrastive Language-Image Pre-training) model for fatigue detection.

View Article and Find Full Text PDF

Background: Road traffic accidents (RTAs) are a critical public health problem leading to significant morbidity, mortality, and socioeconomic losses. Despite known risk factors like substance use and sleep-related problems, there is limited research on the prevalence of these factors among drivers who met with RTAs. Hence, this study aimed to gain insight into the prevalence of substance use and sleep-related problems among this population attending a trauma center in the northern State of India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!