Phase contrast imaging (PCI) is a new physical and biochemical technique. Practical biomedical applications combine PCI with computer tomography (CT), Phase contrast CT (PC-CT) can reconstruct 3D images of samples. How to reconstruct high quality image at a low radiation dose level is a hot topic for PC-CT. In order to reduce radiation dose, a strategy is to collect incomplete projection data by few-view projection data. This work presents a reconstruction method for incomplete data PC-CT. It is based on an algebraic iteration reconstruction algorithm and combined with an anisotropic diffusion model to reduce aliasing distortions.To validate the availability of this method, the research carried out a computer-simulated and real experimental synchrotron data. The computer-simulated and real data results demonstrate that the presented method can improve the convergence speed of image reconstruction and reduce the aliasing distortions by incomplete projection data for PC-CT. However, there is no proof that this is true for all kinds of structures.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-150491DOI Listing

Publication Analysis

Top Keywords

phase contrast
12
projection data
12
image reconstruction
8
reconstruction algorithm
8
contrast imaging
8
anisotropic diffusion
8
diffusion model
8
radiation dose
8
incomplete projection
8
data pc-ct
8

Similar Publications

Impact of measurement location on direct mitral regurgitation quantification using 4D flow CMR.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address:

Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) shows promise for quantifying mitral regurgitation (MR) by allowing for direct regurgitant volume (RVol) measurement using a plane precisely placed at the MR jet. However, the ideal location of a measurement plane remains unclear. This study aims to systematically examine how varying measurement locations affect RVol quantification and determine the optimal location using the momentum conservation principle of a free jet.

View Article and Find Full Text PDF

Phases partitioning and occurrence forms of arsenic, chromium, and vanadium in a tidal reach of the Pearl River estuary, South China.

Environ Pollut

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.

View Article and Find Full Text PDF

Role of Cardiovascular MR Imaging and MR Angiography in Patients with Pulmonary Vascular Disease.

Radiol Clin North Am

March 2025

Radiology Department, Northwestern University Feinberg School of Medicine, Arkes Pavilion, 676 North St Clair Street, Suite 800, Chicago, IL 60611, USA. Electronic address:

Cardiac MR imaging and pulmonary MR angiography (MRA) are important clinical tools for the assessment of pulmonary vascular diseases. There are evolving noncontrast and contrast-enhanced techniques to evaluate pulmonary vasculature. Pulmonary MRA is a feasible imaging alternative to CTA in pulmonary embolism detection.

View Article and Find Full Text PDF

Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!