Biological tests are effective and comprehensive methods to assess toxicity of environmental pollutants to ensure the safety of reclaimed water. In this study, the canonical MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the cytotoxicity of dissolved organic matters (DOMs) of secondary effluents from wastewater treatment plants (WWTPs). It was surprising that most concentrated DOMs treated HepG2 cells yielded much higher signal compared with vehicle control regardless of difference of treatment technologies and seasons. However, there was actually no obvious enhancement of the cell proliferation by microscopy. In order to find out potential reason for the discrepancy, another three assays were performed. The results of ATP assay and flow cytometry showed expected toxicity, which was consistent with microscopy and previous studies, while DNA assay did not exhibit apparent change in treated cells. The possible mechanisms of abnormal MTT signal could be that some materials in secondary effluents isolated by solid extraction with HLB resin directly reacted with MTT and/or enhanced the activity of mitochondrial dehydrogenase. Therefore, the MTT assay is not suitable to assess cytotoxicity of complex mixtures such as secondary effluents, while ATP assay is an optional sensitive method. This study also suggests the importance of choosing both suitable extraction methods and detection assays for toxicity evaluation of component-unknown environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2015.09.006DOI Listing

Publication Analysis

Top Keywords

secondary effluents
16
atp assay
12
mtt assay
8
assay
7
mtt
5
evidence atp
4
assay appropriate
4
appropriate alternative
4
alternative mtt
4
assay cytotoxicity
4

Similar Publications

Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams.

Front Bioeng Biotechnol

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.

The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods.

View Article and Find Full Text PDF

Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis.

J Environ Manage

January 2025

College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China. Electronic address:

The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS).

View Article and Find Full Text PDF

This study investigated the applicability of a protein-like fluorescence sensor for wastewater quality monitoring. Several wastewater matrices, including raw, primary, secondary and tertiary effluents from three different wastewater treatment plants were used. Furthermore, the sensor was tested for the monitoring of quaternary effluent in a pilot scale plant installed downstream of a water reuse facility.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent.

Food Environ Virol

January 2025

Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.

Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!