The enzyme 4-oxalocrotonate tautomerase (4-OT) encoded by the xylH gene is a part of the degradation pathway of aromatic compounds in Pseudomonas putida mt-2. 4-OT was described to catalyze Michael-type addition of acetaldehyde to β-nitrostyrene, and the whole cell system based on recombinantly expressed 4-OT has been developed previously. In this study biocatalytic process based on Escherichia coli whole cells expressing 4-OT was significantly improved using immobilization and ex situ product recovery strategies. Whole cell immobilization in alginate beads was applied in biocatalytic production of 4-nitro-3-phenyl-butanal from β-nitrostyrene and acetaldehyde. Immobilized biocatalyst showed wider pH activity range and could tolerate twofold higher initial concentrations of substrate in comparison to the free whole cell biocatalyst. Beads retained their initial activity over 10 consecutive biotransformations of the model reaction and remained suitable for the repetitive use with 85% of the initial activity after two months of storage. Bioprocess was further improved by utilizing Amberlite XAD-2 hydrophobic resin for the product recovery. With this modification, the amount of organic solvent was reduced 40-fold in comparison to previously reported method making this biocatalytic process greener.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-015-1474-8DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli cells
8
cells expressing
8
4-oxalocrotonate tautomerase
8
biocatalytic process
8
product recovery
8
initial activity
8
immobilization escherichia
4
expressing 4-oxalocrotonate
4
tautomerase improved
4

Similar Publications

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair.

Nucleic Acids Res

January 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.

Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.

View Article and Find Full Text PDF

Neonatal sepsis, a severe infection in newborns, remains one of the leading causes of morbidity and mortality among preterm infants. This study aimed to investigate the distribution of pathogens responsible for early-onset sepsis (EOS) and late-onset sepsis (LOS), the annual variability of pathogens responsible for each type of infection, and potential trends in their profiles in preterm infants from a tertiary care neonatal intensive care unit over a ten-year period. We analyzed 177 episodes of confirmed bloodstream infection between 1 January 2014 and 31 December 2023.

View Article and Find Full Text PDF

Safety and Quality Improvement of NaCl-Reduced Banana and Apple Fermented with .

Foods

December 2024

Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Universidad de Extremadura, 10003 Cáceres, Spain.

Food preservation techniques changed during the industrial revolution, as safer techniques were developed and democratized. However, one of the simplest techniques, adding salt, is still employed in a wide variety of products, not only as a flavor enhancer but as a method to allow for the controlled fermentation of products such as fruits. The objective of the present study consists of evaluating the quality of different salt-reduced fermented fruits through the application of the lactic acid bacteria (LAB) and vacuum, as well as assessing the LAB as a preventive measure against O157:H7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!