In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3β expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!