Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is well known that long-term exposure to arsenite leads to human skin cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism; however, emerging data suggest that constitutive activation of Nrf2 is associated with cancer development and chemotherapy resistance. The reasons Nrf2 continuously accumulates in cancer cells remain to be fully understood. By establishing transformed human keratinocyte cells via chronic arsenite treatment, we observed a continuous reduction in reactive oxygen species levels and enhanced levels of Nrf2 and its target antioxidant enzymes in the later stage of arsenite-induced cell transformation. We also revealed that hypermethylation of the Keap1 gene promoter region induced by DNA methyltransferase-3 leading to inactivation of its function was responsible for constitutive activation of Nrf2 and its target enzymes. To validate these observations, the expression of Keap1 protein was restored in arsenite-transformed cells by treatment with a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-Aza-dC), and protein levels of Nrf2 and colony formation were then determined after these treatments. Results showed that enhancement of Keap1 expression by 5-Aza-dC significantly reduced Nrf2 and its target antioxidant enzyme levels, and that in turn suppressed cell proliferation and colony formation of the transformed cells. Taken together, the present study strongly suggests that loss of Keap1 function by hypermethylation of its promoter region leading to Nrf2 nuclear accumulation appears to play a role in arsenite-induced human keratinocyte transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!