Aims: In vitro expansion changes replication and differentiation capacity of mesenchymal stem cells (MSCs), increasing challenges and risks, while limiting the sufficient number of MSCs required for cytotherapy. Here, we characterized and compared proliferation, differentiation, telomere length and pluripotency marker expression in MSCs of various origins.
Main Methods: Immunophenotyping, proliferation and differentiation assays were performed. Pluripotency marker (Nanog, Oct-4, SOX-2, SSEA-4) expression was determined by immunofluorescence. Quantitative PCR was performed for relative telomere length (RTL) analyses, while expression of relevant genes for pluripotency markers, differentiation state (Cbfa1, human placental alkaline phosphatase, peroxisome proliferator activated receptor, Sox9 and Collagen II a1), and telomerase reverse transcriptase (hTERT) was determined by semiquantitative RT-PCR.
Key Findings: Peripheral blood MSCs (PB-MSCs) and umbilical cord MSCs (UC-MSCs) showed the highest, while periodontal ligament MSCs (PDL-MSCs) and adipose tissue MSCs (AT-MSCs) the lowest values of both the replication potential and RTL. Although MSCs from exfoliated deciduous teeth (SHEDs), PDL-MSCs and AT-MSCs showed higher mRNA expression of pluripotency markers, all MSCs expressed pluripotency marker proteins. SHEDs and PDL-MSCs showed prominent capacity for osteogenesis, PB-MSCs and UC-MSCs showed strengthened adipogenic differentiation potential, while AT-MSCs displayed similar differentiation into both lines.
Significance: The MSCs populations derived from different sources, although displaying similar phenotype, exhibited high degree of variability regarding biological properties related to their self-renewal and differentiation capacity. These data indicate that for more accurate use in cell therapy, individualities of MSCs isolated from different tissues should be identified and taken into consideration when planning their use in clinical protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2015.09.019 | DOI Listing |
Front Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America. Electronic address:
Modeling brain development and function is challenging due to complexity of the organ. Human pluripotent stem cell (PSC)-derived brain-like organoids provide new tools to study the human brain. Compared with traditional in vivo toxicological studies, these 3D models, together with 2D cellular assays, enhance our understanding of the mechanisms of developmental neurotoxicity (DNT) during the early stages of neurogenesis and offer numerous advantages including a rapid, cost-effective approach for understanding compound mechanisms and assessing chemical safety.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.
View Article and Find Full Text PDFOpen Biol
January 2025
Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK.
Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!