An integrated approach for discovery of highly potent and selective Mnk inhibitors: Screening, synthesis and SAR analysis.

Eur J Med Chem

Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia. Electronic address:

Published: October 2015

Deregulation of protein synthesis is a common event in cancer. As MAPK-interacting kinases (Mnks) play critical roles in regulation of protein synthesis, they have emerged as novel anti-cancer targets. Mnks phosphorylate eukaryotic initiation factor 4E (eIF4E) and promote eIF4E-mediated oncogenic activity. Given that the kinase activity of Mnks is essential for oncogenesis but is dispensable for normal development, the discovery of potent and selective pharmacological Mnk inhibitors provides pharmacological target validation and offers a new strategy for cancer treatment. Herein, comprehensive in silico screening approaches were deployed, and three thieno[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives were identified as hit compounds. Further chemical modification of thieno[2,3-d]pyrimidine derivative 3 has given rise to a series of highly potent Mnk2 inhibitors that could be potential leads for the treatment of acute myeloid leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.09.008DOI Listing

Publication Analysis

Top Keywords

highly potent
8
potent selective
8
mnk inhibitors
8
protein synthesis
8
integrated approach
4
approach discovery
4
discovery highly
4
selective mnk
4
inhibitors screening
4
screening synthesis
4

Similar Publications

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

The recent advance of PROTACs targeting BCR-ABL for the treatment of chronic myeloid leukemia.

Bioorg Chem

January 2025

Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018 China. Electronic address:

The chronic myeloid leukemia is a malignant hematopoietic disorder in which the BCR-ABL kinase has been identified as the causative protein. The inhibitors targeting BCR-ABL kinase have been extensively employed in clinical management of chronic myeloid leukemia, significantly enhancing survival rates and prognosis for patients. Despite the extensive utilization of 1st to 4th generation BCR-ABL inhibitors in clinical therapy, the emergence of drug-resistant mutations necessitates an urgent quest for novel therapeutic strategies.

View Article and Find Full Text PDF

Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation.

Int Immunopharmacol

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.

View Article and Find Full Text PDF

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!