A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production. | LitMetric

A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production.

Biochem Pharmacol

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Published: December 2015

Acebutolol, a β-adrenergic receptor-blocker, occasionally causes drug-induced lupus erythematosus (DILE). Acebutolol is mainly metabolized to diacetolol. Because metabolic activation has been considered to be related to acebutolol-induced toxicity, we sought to identify the enzymes that are responsible for acebutolol metabolism and investigate their involvement in acebutolol-induced toxicity. By using human liver microsomes (HLM) or intestinal microsomes and recombinant enzymes, we found that diacetolol was produced via hydrolysis by carboxylesterase 2 (CES2) and subsequent acetylation by N-acetyltransferase 2 (NAT2). When acetolol, a hydrolytic metabolite of acebutolol, was incubated with HLM and an NADPH-generating system, a metabolite conjugated with N-acetylcystein was generated. This metabolite was found to be formed by CYP2C19 based on studies with a panel of recombinant cytochrome P450 enzymes and an inhibition study using HLM with tranylcypromine, a CYP2C19 inhibitor. Because antinuclear antibody (ANA) production is associated with DILE, we investigated whether ANA was detected in plasma from mice treated with acebutolol. Administration of acebutolol (100mg/kg, p.o.) to female C57BL/6 mice for 30 days resulted in ANA production in plasma in seven of thirteen mice. The number of mice that showed ANA production was larger in mice co-treated with pregnenolone 16α-carbonitrile, an inducer of P450s, whereas it was lower in mice co-treated with tri-o-tolylphosphate or 1-aminobenzotriazole, which are inhibitors of esterases or P450s, respectively. These results suggested that the hydrolysis and oxidation of acebutolol was associated with ANA production. In summary, this study demonstrated that metabolic activation may be a causal factor of adverse reactions of acebutolol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2015.09.016DOI Listing

Publication Analysis

Top Keywords

ana production
16
acebutolol
9
antinuclear antibody
8
metabolic activation
8
acebutolol-induced toxicity
8
mice co-treated
8
mice
6
production
5
ana
5
proposed mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!