A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mutations in the transmembrane helix S6 of domain IV confer cockroach sodium channel resistance to sodium channel blocker insecticides and local anesthetics. | LitMetric

Indoxacarb and metaflumizone are two sodium channel blocker insecticides (SCBIs). They preferably bind to and trap sodium channels in the slow-inactivated non-conducting state, a mode of action similar to that of local anesthetics (LAs). Recently, two sodium channel mutations, F1845Y (F(4i15)Y) and V1848I (V(4i18)I), in the transmembrane segment 6 of domain IV (IVS6), were identified to be associated with indoxacarb resistance in Plutella xylostella. F(4i15) is known to be critical for the action of LAs on mammalian sodium channels. Previously, mutation F(4i15)A in a cockroach sodium channel, BgNav1-1a, has been shown to reduce the action of lidocaine, a LA, but not the action of SCBIs. In this study, we introduced mutations F(4i15)Y and V(4i18)A/I individually into the cockroach sodium channel, BgNav1-1a, and conducted functional analysis of the three mutants in Xenopus oocytes. We found that both the F(4i15)Y and V(4i18)I mutations reduced the inhibition of sodium current by indoxacarb, DCJW (an active metabolite of indoxacarb) and metaflumizone. F(4i15)Y and V(4i18)I mutations also reduced the use-dependent block of sodium current by lidocaine. In contrast, substitution V(4i18)A enhanced the action metaflumizone and lidocaine. These results show that both F(4i15)Y and V(4i18)I mutations may contribute to target-site resistance to SCBIs, and provide the first molecular evidence for common amino acid determinants on insect sodium channels involved in action of SCBIs and LA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739882PMC
http://dx.doi.org/10.1016/j.ibmb.2015.09.011DOI Listing

Publication Analysis

Top Keywords

sodium channel
24
cockroach sodium
12
sodium channels
12
f4i15y v4i18i
12
v4i18i mutations
12
sodium
11
channel blocker
8
blocker insecticides
8
local anesthetics
8
indoxacarb metaflumizone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!