Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles.

Ecotoxicology

CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China.

Published: December 2015

AI Article Synopsis

  • Cu/CuxO nanoparticles were synthesized using glucose as a reducing agent and exhibited various shapes, such as polyhedral, flower-like, and thumbtack-like, confirmed through X-ray diffraction and scanning electron microscopy.
  • The study evaluated their antimicrobial effectiveness against Escherichia coli, revealing that the flower-like nanoparticles were the most potent, largely due to the increased release of copper ions into the culture media.
  • Surface free energy calculations showed that the crystal facets of the Cu NPs have different reactivities, with flower-like shapes demonstrating the highest reactivity, linking their morphology to their antimicrobial performance.

Article Abstract

Cu/CuxO nanoparticles (NPs) with different morphologies have been synthesized with glucose as a reducing agent. The X-ray diffraction and Scanning electron microscopy imaging show that the Cu/CuxO NPs have fine crystalline peaks with homogeneous polyhedral, flower-like, and thumbtack-like morphologies. Their antimicrobial activities were evaluated on inactivation of Escherichia coli using a fluorescence-based live/dead staining method. Dissolution of copper ions from these NPs was determined. Results demonstrated a significant growth inhibition for these NPs with different morphologies, and the flower-like Cu/CuxO NPs were the most effective form, where more copper ions were dissolved into the culture media. Surface free energy calculations based on first-principle density functional theory show that different crystal facets of the copper NPs have diverse surface energy, indicating the highest reactivity of the flower-like NPs, which is consistent with the results from the dissolution study and antimicrobial activity test. Together, these results suggest that the difference between the surface free energy may be a cause for their morphology-dependent antimicrobial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-015-1554-1DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
morphology-dependent antimicrobial
8
cu/cuxo nanoparticles
8
nps morphologies
8
cu/cuxo nps
8
copper ions
8
surface free
8
free energy
8
nps
7
cu/cuxo
4

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Objective: Wound management can be costly and challenging to the health services' scarce resources. Information regarding the number of wounds in a community care setting and their associated aetiology will provide nurses and nurse managers with an insight into the specific needs of these clients with wounds and highlight areas where care or services can be improved or further developed. This research aimed to establish the prevalence and aetiology of wounds, the current delivery of wound care, wound documentation and referral pathways in an Irish community care setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!