Rationale: The identification and the determination of the extent of protein phosphorylation are major prerequisites for the comparative analysis of this important posttranslational modification of proteins in different biological situations. High sequence coverages and the availability of straightforward quantification methods are necessary to achieve these goals.
Methods: Phosphoproteins and non-phosphorylated analogues separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were digested using four different proteases (trypsin, chymotrypsin, elastase and GluC) and the digests were isobarically labeled using eight-plex iTRAQ. The combined labeled digests were subsequently enriched using titanium dioxide and both the phosphorylated and non-phosphorylated fractions were analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). The influence of different data analysis algorithms (Percolator or False Discovery Rate) on the outcome of analysis was investigated.
Results: Almost complete sequence coverage could be achieved upon application of a multi-protease approach. The formation of peptides of different lengths and physicochemical properties allowed the identification and the mapping of all phosphorylation sites in the investigated model proteins. The introduction of isobaric labels allowed quantification of different peptides of the same phosphorylation site with more than one peptide, leading to significantly improved statistical confidence.
Conclusions: A workflow for the straightforward comparative analysis of protein phosphorylation in samples of low complexity, e.g. isolated proteins, was developed. The workflow is transferable to other posttranslational modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.7185 | DOI Listing |
Cancer Metab
January 2025
Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
Invasiveness of pituitary adenoma is the main cause of its poor prognosis, mechanism of which remains largely unknown. In this study, the differential proteins between invasive and non-invasive pituitary tumors (IPA and NIPA) were identified by TMT labeled quantitative proteomics. The differential metabolites in venous bloods from patients with IPA and NIPA were analyzed by untargeted metabolomics.
View Article and Find Full Text PDFJ Transl Med
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!