A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionality, Effectiveness, and Mechanistic Evaluation of a Multicatalyst-Promoted Reaction Sequence by Electrospray Ionization Mass Spectrometry. | LitMetric

Functionality, Effectiveness, and Mechanistic Evaluation of a Multicatalyst-Promoted Reaction Sequence by Electrospray Ionization Mass Spectrometry.

Chemistry

Max-Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2982.

Published: November 2015

A multicatalytic three-step reaction consisting of epoxidation, hydrolysis, and enantioselective monoacylation of cyclohexene was studied by using mass spectrometry (MS). The reaction sequence was carried out in a one-pot reaction using a multicatalyst. All reaction steps were thoroughly analyzed by electrospray ionization (ESI) MS (and MS/MS), as well as high-resolution MS for structure elucidation. These studies allow us to shed light on the individual mode of action of each catalytic moiety. Thus, we find that under the epoxidation conditions, the catalytically active N-methyl imidazole for the terminal acylation step is partially deactivated through oxidation. This observation helps to explain the lower efficiency of the catalyst in the last step compared to the monoacylation performed separately. All reactive intermediates and products of the reaction sequence, as well as of the side-reactions, were monitored, and we present a working mechanism of the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201502640DOI Listing

Publication Analysis

Top Keywords

reaction sequence
12
electrospray ionization
8
mass spectrometry
8
reaction
7
functionality effectiveness
4
effectiveness mechanistic
4
mechanistic evaluation
4
evaluation multicatalyst-promoted
4
multicatalyst-promoted reaction
4
sequence electrospray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!