Intrinsic fluctuations and driven response of insect swarms.

Phys Rev Lett

Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.

Published: September 2015

Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.115.118104DOI Listing

Publication Analysis

Top Keywords

intrinsic fluctuations
8
fluctuations driven
4
driven response
4
response insect
4
insect swarms
4
swarms animals
4
animals sizes
4
sizes form
4
form groups
4
groups acting
4

Similar Publications

Molecular dynamics simulations to decipher the hotspots at the allosteric site of human 5-lipoxygenase.

J Mol Graph Model

January 2025

Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. Electronic address:

Human 5-lipoxygenase (LOX) is a non-heme, Fe-containing LOX which catalyses the conversion of arachidonic acid (AA) to leukotriene A (LTA). LTA is subsequently converted to cysteinyl-LTs and LTB that cause bronchoconstriction and act as chemotactic and chemokinetic agent on human leukocytes, respectively. Leukotrienes play significant roles in inflammation in asthma, cardiovascular diseases, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, rheumatoid arthritis, psoriasis and many more.

View Article and Find Full Text PDF

Climate change is an emerging global reality with widespread effects on ecosystems and human communities. However, its significant impact on livestock animals often goes underdiscussed as more focus is given to impact of livestock production on climate change. Implementing high-welfare systems, such as digital monitoring of animals, can help mitigate climate-related challenges by reducing temperature fluctuations and controlling disease spread.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!