The interaction between light and novel two-dimensional electronic states holds promise to realize new fundamental physics and optical devices. Here, we use pump-probe photoemission spectroscopy to study the optically excited Dirac surface states in the bulk-insulating topological insulator Bi_{2}Te_{2}Se and reveal optical properties that are in sharp contrast to those of bulk-metallic topological insulators. We observe a gigantic optical lifetime exceeding 4 μs (1 μs=10^{-6} s) for the surface states in Bi_{2}Te_{2}Se, whereas the lifetime in most topological insulators, such as Bi_{2}Se_{3}, has been limited to a few picoseconds (1 ps=10^{-12} s). Moreover, we discover a surface photovoltage, a shift of the chemical potential of the Dirac surface states, as large as 100 mV. Our results demonstrate a rare platform to study charge excitation and relaxation in energy and momentum space in a two-dimensional system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.116801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!