Microscopic thin films have shown wavelength selectivity in the context of radiative heat transfer. We propose a methodology to shift the wavelength selectivity in the desired location. This work deals with the far-field and near-field radiation from thin films embedded with nanoparticles. The calculations of emission spectra are performed using the Fresnel equations in the far-field limit, and using the dyadic Green's function formalism for transmissivity between the closely spaced objects in the near-field regime. For the media doped with nanoparticles, an effective dielectric function using the Maxwell-Garnett-Mie theory is used to calculate emissivity and radiative heat transfer. It has been shown that the wavelength selectivity in the emission spectra can be influenced by varying the size and/or the volume fraction of nanoparticles. We characterize the wavelength selectivity using real and imaginary parts of the effective refractive index. We show that the influence of nanoparticles on wavelength selectivity is different depending on whether the particles are of polar materials or are metallic.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.0A1129DOI Listing

Publication Analysis

Top Keywords

wavelength selectivity
24
nanoparticles wavelength
8
far-field near-field
8
thin films
8
radiative heat
8
heat transfer
8
emission spectra
8
wavelength
6
selectivity
6
role nanoparticles
4

Similar Publications

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

Detecting biothiols like glutathione (GSH), homocysteine (Hcy), and cysteine (Cys) is key to understanding their roles in health and disease. We developed BT-DNBS, a cyanine-based turn-on fluorescent probe with a dinitrobenzenesulfonyl (DNBS) quencher group. Upon biothiol interaction, the quencher is cleaved, restoring fluorescence.

View Article and Find Full Text PDF

Spiro architectures with π-conjugation have improved thermal stability and stronger photosensitivity, making them potentially useful for organic optoelectronic devices. Our recent work has demonstrated the synthetic chemistry of a novel thiophene oligomer combining 2,7-dihydrooxepine and dispiro structure and derived it into A-D-A-type compounds. The optical spectroscopy and electrochemical characteristics were investigated.

View Article and Find Full Text PDF

The MKN45 cell line, a type of gastric cancer cell, exhibits resistance to chemotherapy agents through various mechanisms. Curcumin and noscapine, two plant-derived anticancer compounds, exhibit selective cytotoxicity towards cancer cells. However, their bioavailability is poor both in vitro and in vivo.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!