Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic (PA) signal from the bone. Modeling and numerical simulation of PA signal were performed on trabecular bone simulations and CT scans with different trabecular thicknesses. The resulting quasi-linear photoacoustic spectra were fittted by linear regression, from which the spectral parameter slope was quantified. The simulation based on two different models both demonstrate that bone specimens with thinner trabecular thicknesses have higher slope. Experiment on osteoporotic rat femoral heads with different mineral content was conducted. The finding from the experiment was in good agreement with the simulation, demonstrating that the frequency-domain analysis of PA signals can provide an objective assessment of bone microstructure and deterioration. Considering that PA measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and non-calcified tissues, this new bone evaluation method based on photoacoustic spectral analysis holds potential for clinical management of osteoporosis and other bone diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646513 | PMC |
http://dx.doi.org/10.1364/OE.23.025217 | DOI Listing |
J Biomech Eng
January 2025
Dr. Carl D. and H. Jane Clay Department of Mechanical Engineering, Ohio Northern University, 525 S. Main St, Ada OH 45810.
Evaluating the contribution of microstructure to overall bone strength is tricky since it is difficult to control changes to pore structure in human or animal samples. We developed an open-source program that can generate three-dimensional models of micron-scale cortical bone. These models can be highly customized with a wide array of variable input parameters to allow for generation of samples with high similarity to CT scans of cortical bone or with specific geometric features.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2025
Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India.
Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study.
View Article and Find Full Text PDFKorean J Radiol
January 2025
Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2) and a conventional T2-w FSE Dixon sequence (T2) for breast magnetic resonance imaging (MRI).
Materials And Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2 and T2 sequences were acquired for each patient.
BMC Cancer
January 2025
Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.
Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.
Dev Growth Differ
January 2025
Instituto de Bio y Geociencias del NOA (IBIGEO), CCT CONICET Salta-Jujuy, Rosario de Lerma, Argentina.
Despite the significant literature about morphological features of limb skeletons involved in tetrapod limb evolution, some questions about carpal and tarsal elements remain. In anurans, the ecomorphological and biomechanical approaches studied long hind limbs (to jump) and forelimbs (to land) and emphasized the role of the long bones in locomotion but disregarded what happens with the nodular elements of the carpus and tarsus. Here, we present a comparative study of nodular elements of the carpus and tarsus in anurans based on whole-mount specimens stained with Alcian Blue (cartilage) and Alizarin Red S (bone and calcified cartilage).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!