We demonstrate that n-doped resistive heaters in silicon waveguides show photoconductive effects with high responsivities. These photoconductive heaters, integrated into microring resonator (MRR)-based filters, were used to automatically tune and stabilize the filter's resonance wavelength to the input laser's wavelength. This is achieved without requiring dedicated defect implantations, additional material depositions, dedicated photodetectors, or optical power tap-outs. Automatic wavelength stabilization of first-order MRR and second-order series-coupled MRR filters is experimentally demonstrated. Open eye diagrams were obtained for data transmission at 12.5 Gb/s while the temperature was varied by 5 °C at a rate of 0.28 °C/s. We theoretically show that series-coupled MRR-based filters of any order can be automatically tuned by using photoconductive heaters to monitor the light intensity in each MRR, and sequentially aligning the resonance of each MRR to the laser's wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.025084 | DOI Listing |
ACS Appl Mater Interfaces
August 2020
Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013, India.
Transparent electronics continues to revolutionize the way we perceive futuristic devices to be. In this work, we propose a technologically advanced volatile organic compound (VOC) sensor in the form of a thin-film transparent display fabricated using fluorinated SnO films. A solution-processed method for surface fluorination of SnO films using Selectfluor as a fluorinating agent has been developed.
View Article and Find Full Text PDFWe leverage the photo-conductance (PC) effect in doped phase-shifter heaters for both controlling and calibrating Mach-Zehnder interferometer (MZI) switch elements. Both the steady-state and the transient response are experimentally characterized, and compact models for the PC current are developed. Utilizing the PC effect, a topology-agnostic algorithm is then outlined.
View Article and Find Full Text PDFMicroring weight banks present novel opportunities for reconfigurable, high-performance analog signal processing in photonics. Controlling microring filter response is a challenge due to fabrication variations and thermal sensitivity. Prior work showed continuous weight control of multiple wavelength-division multiplexed signals in a bank of microrings based on calibration and feedforward control.
View Article and Find Full Text PDFWe demonstrate that n-doped resistive heaters in silicon waveguides show photoconductive effects with high responsivities. These photoconductive heaters, integrated into microring resonator (MRR)-based filters, were used to automatically tune and stabilize the filter's resonance wavelength to the input laser's wavelength. This is achieved without requiring dedicated defect implantations, additional material depositions, dedicated photodetectors, or optical power tap-outs.
View Article and Find Full Text PDFWe study the photoconductive effect of a p-i-p micro-heater integrated in a microring resonator. Due to the surface state absorption (SSA) and two photon absorption (TPA) of optical wave around 1550 nm, free carriers are generated in the silicon waveguide, leading to the modulation of silicon conductivity and thus the current flowing through it. The current-voltage (I-V) response of the p-i-p diode is dependent on the bias voltage and can be divided into ohmic-law regime and space-charge-limited regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!