Down-regulation of AKT combined with radiation-induced autophagy and apoptosis roles in MCF-7 cells.

Biomed Mater Eng

Department of Epidemiology, School of Public Health, Beihua University, Jilin 132011, Jilin, China.

Published: July 2016

AI Article Synopsis

  • Autophagy is a natural process that breaks down cellular components in lysosomes for recycling, and it's being explored as a treatment strategy alongside radiotherapy for breast cancer.
  • Research shows that both autophagy and apoptosis (cell death) can be triggered by radiation, and preventing autophagy may lead to increased apoptosis in cancer cells.
  • The molecule Akt suppresses autophagy and apoptosis, and inhibiting Akt could boost the effectiveness of radiation treatment in breast cancer cells, suggesting it may be a promising target in therapy.

Article Abstract

Autophagy is an evolutionarily conservation process whereby cytoplasm and cellular organelles are degraded in lysosomes for amino acid and energy recycling. Autophagy concurrent with radiotherapy has emerged as a novel approach in breast cancer treatment. Our studies conclude that autophagy and apoptosis can be induced by radiation and inhibition of autophagy can increase apoptosis. In addition, Akt is a molecule that down-regulates autophagy and apoptosis; blocking Akt can enhance autophagy and apoptosis induced by radiation in MCF-7 cells. Akt could become a new focus in breast cancer radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-151532DOI Listing

Publication Analysis

Top Keywords

autophagy apoptosis
16
mcf-7 cells
8
breast cancer
8
apoptosis induced
8
induced radiation
8
autophagy
7
apoptosis
5
down-regulation akt
4
akt combined
4
combined radiation-induced
4

Similar Publications

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Parasitoid wasps, one of the most diverse and species-rich animal groups on Earth, produce venoms that manipulate host development and physiology to exploit resources. However, mechanisms of actions of these venoms remain poorly understood. Here, we discovered that the endoparasitoid wasp, , induces apoptosis, autophagy, and mitotic arrest in the adult tissue precursors of its host larvae.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Background: Programmed cell death plays an important role in neuronal injury and death after ischemic stroke (IS), leading to cellular glucose deficiency. Glucose deficiency can cause abnormal accumulation of cytotoxic disulfides, resulting in disulfidptosis. Ferroptosis, apoptosis, necroptosis, and autophagy inhibitors cannot inhibit this novel programmed cell death mechanism.

View Article and Find Full Text PDF

Effect of anemoside B4 on ameliorating cerebral ischemic/reperfusion injury.

Iran J Basic Med Sci

January 2025

Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.

Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!