Multi-label classification is useful in many bioinformatics tasks such as gene function prediction and protein site localization. This paper presents an improved neural network algorithm, Max Label Distance Back Propagation Algorithm for Multi-Label Classification. The method was formulated by modifying the total error function of the standard BP by adding a penalty term, which was realized by maximizing the distance between the positive and negative labels. Extensive experiments were conducted to compare this method against state-of-the-art multi-label methods on three popular bioinformatic benchmark datasets. The results illustrated that this proposed method is more effective for bioinformatic multi-label classification compared to commonly used techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-151500 | DOI Listing |
Stat Med
February 2025
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
In biomedical studies, gene-environment (G-E) interactions have been demonstrated to have important implications for analyzing disease outcomes beyond the main G and main E effects. Many approaches have been developed for G-E interaction analysis, yielding important findings. However, hierarchical multi-label classification, which provides insightful information on disease outcomes, remains unexplored in G-E analysis literature.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.
View Article and Find Full Text PDFInt J Neural Syst
January 2025
Alibaba Cloud, Hangzhou, P. R. China.
Multi-label zero-shot learning (ML-ZSL) strives to recognize all objects in an image, regardless of whether they are present in the training data. Recent methods incorporate an attention mechanism to locate labels in the image and generate class-specific semantic information. However, the attention mechanism built on visual features treats label embeddings equally in the prediction score, leading to severe semantic ambiguity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Transmission lines are vital for delivering electricity over long distances, yet they face reliability challenges due to faults that can disrupt power supply and pose safety risks. This research introduces a novel approach for fault detection and classification by analyzing voltage and current patterns across transmission line phases. Leveraging a comprehensive dataset of diverse fault scenarios, various machine learning algorithms-including Random Forest (RF), K-Nearest Neighbors (KNN), and Long Short-Term Memory (LSTM) networks-are evaluated.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea. Electronic address:
Cancer metastasis is the dissemination of tumor cells from the primary tumor site to other parts of the body via the lymph system or bloodstream. Metastasis is the leading cause of cancer associated death. Despite the significant advances in cancer research and treatment over the past decades, metastasis is not fully understood and difficult to predict in advance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!