Nanofiber containing carbon nanotubes enhanced PC12 cell proliferation and neuritogenesis by electrical stimulation.

Biomed Mater Eng

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1 Sec. 3, Chung-Hsiao E. Rd, Taipei 10608, Taiwan.

Published: July 2016

The nervous system is an important regulator of the human body because it adapts our responses to the external environment and provides people the ability of thought, memory, and emotion. PC12 is a cell line that is commonly used to study the behavior of neural differentiation. PC12 cells further differentiate into nerve cells when stimulated by nerve growth factor (NGF), which have neurite, dendrite, and axon, and form synapses with neighboring cells to build neural networks. Micropatterns and electric stimulation can significantly influence cellular attachment, proliferation, orientation, extracellular matrix (ECM) expression, neural differentiation, and cellular motion. We fabricated polycaprolactone (PCL) nanofiber with or without carbon nanotubes (CNTs) by electrospinning and promoted the neural differentiation of PC12 cells by electric stimulation. We used scanning electron microscope (SEM) and fluorescence microscope to observe the NGF-induced growth of PC12 cells on PCL nanofiber. Axon formation and cellular activity expression, that confirm that PC12 cells can grow well on PCL nanofiber, and the gene expressions of MAP1b and GAP43 significantly increased after electric stimulation. Based on the results, the structure of nanofibers containing CNTs can effectively induce neural differentiation of PC12 cells in an electric field. This experimental model can be used for future clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-151305DOI Listing

Publication Analysis

Top Keywords

pc12 cells
20
neural differentiation
16
differentiation pc12
12
electric stimulation
12
pcl nanofiber
12
nanofiber carbon
8
carbon nanotubes
8
pc12 cell
8
cells electric
8
pc12
7

Similar Publications

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

BITS Pilani Hyderabad Campus, Hyderabad, Telangana, India; RMIT, Melbourne, VIC, Australia.

Background: Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is categorized as a complicated disorder of extreme fatigue lasting for at least six months without any underlying medical problem and currently has no concrete treatment regimen. This is associated with neurological complications like brain fog, insomnia, psychiatric disturbances and above all neuroinflammation. A chronic forced swim test model of CFS has been established since more than a decade at our laboratory.

View Article and Find Full Text PDF

Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear.

View Article and Find Full Text PDF

Introduction: Compression of the nerve root by a lumbar disc herniation can cause radiating pain in the lower limbs, and the nerve root decompression treatment may leave some patients with motor dysfunction and reduced sensory function. Studies have shown that nerve growth factor (NGF) can promote nerve growth and repair, but high doses, long duration, and immune response have become bottlenecks of its clinical application.

Methods: To overcome this obstacle, we developed Prussian blue (PBs) nanoparticles with the bio-delivery function and antioxidant effects of nanoenzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!