B2 RNA is a mouse non-coding RNA that binds directly to RNA polymerase II (Pol II) and represses transcription by disrupting critical interactions between the polymerase and promoter DNA. How the structural regions within B2 RNA work together to mediate transcriptional repression is not well understood. To address this question, we systematically deleted structural regions from B2 RNA and determined the effects on transcriptional repression using a highly purified Pol II transcription system. Deletions that compromised the ability of B2 RNA to function as a transcriptional repressor were also tested for their ability to bind directly to Pol II, which enabled us to distinguish regions uniquely important for repression from those important for binding. We found that transcriptional repression requires a pattern of RNA structural motifs consisting of an extended single-stranded region bordered by two stem-loops. Hence, there is modularity in the function of the stem-loops in B2 RNA-when one stem-loop is deleted, another can take its place to enable transcriptional repression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578731PMC
http://dx.doi.org/10.3390/ncrna1010004DOI Listing

Publication Analysis

Top Keywords

transcriptional repression
16
structural regions
12
regions rna
12
rna
9
rna polymerase
8
repression
6
transcriptional
5
repression rna
4
polymerase transcription
4
transcription rna
4

Similar Publications

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains.

Mol Cell

December 2024

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. Electronic address:

Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state.

View Article and Find Full Text PDF

Strigolactone (SL) is a plant hormone required for plant development. DWARF53 (D53) functions as a transcription repressor in SL signaling. However, the role of D53 in cotton (Gossypium hirsutum, Gh) fiber development remains unclear.

View Article and Find Full Text PDF

Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.

View Article and Find Full Text PDF

Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!