The Type 1 Diabetes Genetics Consortium (T1DGC) comprised groups of investigators from many countries throughout the world, with a common goal of identifying genes predisposing to type 1 diabetes. The T1DGC ascertained and collected samples from families with two or more affected siblings with type 1 diabetes and generated a broad array of clinical, genetic, and immunologic data. The T1DGC Autoantibody Workshop was designed to distribute data for analyses to discover genes associated with autoantibodies in those with type 1 diabetes. In the T1DGC-affected sibling pair families, three T1DGC Network laboratories measured antibodies to the islet autoantigens GAD65 and the intracellular portion of protein tyrosine phosphatase (IA-2A). The availability of extensive genetic data provided an opportunity to investigate the associations between type 1 diabetes and other autoimmune diseases for which autoantibodies could be measured. Measurements of additional nonislet autoantibodies, including thyroid peroxidase, tissue transglutaminase, 21-hydroxylase, and the potassium/hydrogen ion transporter H+/K+-ATPase, were performed by the T1DGC laboratory at the Barbara Davis Center for Childhood Diabetes, Aurora, CO. Measurements of all autoantibodies were transmitted to the T1DGC Coordinating Center, and the data were made available to members of the T1DGC Autoantibody Working Groups for analysis in conjunction with existing T1DGC genetic data. This article describes the design of the T1DGC Autoantibody Workshop and the quality-control procedures to maintain and monitor the performance of each laboratory and provides the quality-control results for the nonislet autoantibody measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4582913PMC
http://dx.doi.org/10.2337/dcs15-2002DOI Listing

Publication Analysis

Top Keywords

type diabetes
24
autoantibody workshop
12
t1dgc autoantibody
12
t1dgc
9
autoantibodies type
8
diabetes genetics
8
genetics consortium
8
genetic data
8
diabetes
7
type
6

Similar Publications

BNT162b2 mRNA vaccine elicits robust virus-specific antibodies but poor cross-protective CD8 memory T cell responses in adolescents with type 1 diabetes.

J Microbiol Immunol Infect

January 2025

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:

Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.

Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.

View Article and Find Full Text PDF

ISG15 increases the apoptosis of β cells in type 1 diabetes.

Cell Signal

January 2025

Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:

Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.

View Article and Find Full Text PDF

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance.

Ecotoxicol Environ Saf

January 2025

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China. Electronic address:

Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO.

View Article and Find Full Text PDF

The chronic diabetic wounds represented by diabetes foot ulcers (DFUs) are a worldwide challenge. Excessive production of reactive oxygen species (ROS) and persistent inflammation caused by the impaired phenotype switch of macrophages from M1 to M2 during wound healing are the main culprits of non-healing diabetic wounds. Therefore, an injectable DMM/GelMA hydrogel as a promising wound dressing was designed to regulate the mitochondrial metabolism of macrophages via inhibiting succinate dehydrogenase (SDH) activity and to promote macrophage repolarization towards M2 type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!