Improved universal cloning of influenza A virus genes by LacZα-mediated blue/white selection.

J Virol Methods

Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493 Greifswald - Insel Riems, Germany. Electronic address:

Published: December 2015

Reverse genetics of influenza A viruses facilitates both basic research and vaccine development. However, efficient cloning of virus gene segments was cumbersome in established systems due to the necessary cleavage of amplicons with outside cutter restriction enzymes followed by ligation. Occasionally, virus genes may contain cleavage sites for those enzymes. To circumvent that problem, we previously established target-primed plasmid amplification using the negative selection marker ccdB cloned into the plasmid pHW2000, flanked by the highly conserved gene segment termini. Here, we further introduced the LacZα fragment downstream of the ccdB region for additional ad-hoc selection of transformed bacteria by blue/white pre-screening. For comparison, we cloned three gene segments (PA, HA, and NS) from the influenza strain A/Swine/Belgium/1/1979 (H1N1) (SwBelg79) into plasmid vectors pHWSccdB and pHWSccdB-LacZα and observed same cloning efficiency. Furthermore, the plasmid pHWSccdB-LacZα allows easy elimination of bacterial colonies containing empty plasmid clones. Using this improved plasmid, we obtained the complete genomic set of eight functional plasmids for SwBelg79.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2015.09.009DOI Listing

Publication Analysis

Top Keywords

virus genes
8
gene segments
8
plasmid
6
improved universal
4
universal cloning
4
cloning influenza
4
influenza virus
4
genes laczα-mediated
4
laczα-mediated blue/white
4
blue/white selection
4

Similar Publications

Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Detection of SARS-CoV-2 and a possible variant in shelter cats.

PLoS One

January 2025

Arizona Humane Society, Phoenix, Arizona, United States of America.

SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively.

View Article and Find Full Text PDF

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!