Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

J Med Microbiol

Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Published: November 2015

Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000175DOI Listing

Publication Analysis

Top Keywords

biofilms
10
candida albicans
8
fusarium oxysporum
8
nail biofilms
8
activity biofilms
8
nail fragments
8
biofilms formed
8
ml- 1 inhibited
8
inhibited biofilm
8
biofilm formation
8

Similar Publications

Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.

View Article and Find Full Text PDF

Genotypic diversity and virulence factors of Klebsiella pneumoniae in a North Indian tertiary care hospital.

BMC Infect Dis

December 2024

Lab Services and Infection Control; Chief, Education and Research, Artemis Hospitals, Sector-51, Gurugram, Haryana, India.

Klebsiella pneumoniae, a pathogen of concern worldwide can be classified as classical K. pneumoniae (cKp) and Hypervirulent K. pneumoniae (HvKp).

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.

View Article and Find Full Text PDF

Crystal-violet staining, microscopy with image analysis, and quantitative PCR (qPCR) were compared to examine biofilm dynamics. Biofilms of 30 polycultures comprising 15 bacterial species were monitored for 14 days. Collectively, qPCR (representing population) revealed a different growth pattern compared to staining (biomass) and microscopy (colonization): biomass and colonization gradually increased over time, whereas population increased rapidly for the first seven days and leveled off.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!